LONG-FINNED PILOT WHALE (*Globicephala melas melas*):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of pilot whales in the western Atlantic—the long-finned pilot whale, *Globicephala melas melas*, and the short-finned pilot whale, *G. macrorhynchus*. These species are difficult to differentiate at sea and cannot be reliably visually identified during either abundance surveys or observations of fishery mortality without high-quality photographs (Rone and Pace 2012); therefore, the ability to separately assess the two species in U.S. Atlantic waters is complex and requires additional information on seasonal spatial distribution. The long-finned pilot whale is distributed from North Carolina to North Africa (and the Mediterranean) and north to Iceland, Greenland and the Barents Sea (Sergeant 1962; Leatherwood *et al.* 1976; Abend 1993; Bloch *et al.* 1993; Abend and Smith 1999). The stock structure of the North Atlantic population is uncertain (ICES 1993; Fullard *et al.* 2000). Morphometric (Bloch and Lastein 1993) and genetic (Siemann 1994; Fullard *et al.* 2000) studies have provided little support for stock separation across the Atlantic (Fullard *et al.* 2000). However, Fullard *et al.* (2000) have proposed a stock structure that is related to sea-surface temperature: 1) a cold-water population west of the Labrador/North Atlantic current, and 2) a warm-water population that extends across the Atlantic in the Gulf Stream.

In U.S. Atlantic waters, pilot whales (*Globicephala* sp.) are distributed principally along the continental shelf edge off the northeastern U.S. coast in winter and early spring (CETAP 1982; Payne and Heinemann 1993; Abend and Smith 1999; Hamazaki 2002). In late spring, pilot whales move onto Georges Bank and into the Gulf of Maine and more northern waters, and remain in these areas through late autumn (CETAP 1982; Payne and Heinemann 1993). Pilot whales tend to occupy areas of high relief or submerged banks. They are also associated with the Gulf Stream wall and thermal fronts along the continental shelf edge (Waring *et al.* 1992). Long-finned and short-finned pilot whales overlap spatially along the mid-Atlantic shelf break between New Jersey and the southern flank of Georges Bank (Payne and Heinemann 1993). Long-finned pilot whales have occasionally been observed stranded as far south as South Carolina, and short-finned pilot whales have occasionally been observed stranded as far north as Massachusetts. The latitudinal ranges of the two species therefore remain uncertain, although south of Cape Hatteras, most pilot whale sightings are expected to be short-finned pilot whales, while north of ~42°N most pilot whale sightings are expected to be long-finned pilot whales (Figure 1).

![Figure 1. Distribution of long-finned (open symbols), short-finned (black symbols), and possible mixed (gray symbols; could be either species) pilot whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006, 2007 and 2011. The inferred distribution of the two species is preliminary and is valid for June-August only. Isobaths are the 100-m, 1,000-m, and 4,000-m depth contours.](image-url)
POPULATION SIZE

The best available estimate for long-finned pilot whales in the western North Atlantic is 5,636 (CV=0.63; Table 1). This estimate is from summer 2011 surveys covering waters from central Virginia to the lower Bay of Fundy. The best available abundance estimate is from the shipboard survey conducted during the summer of 2011 because this is the most recent survey. It should be noted, however, that these surveys did not include areas of the Scotian Shelf where the highest densities of pilot whales were observed in the summer of 2006, therefore they represent an underestimation of the overall abundance of this stock. Because long-finned and short-finned pilot whales are difficult to distinguish at sea, sightings data are reported as *Globicephala sp*. These survey data have been combined with an analysis of the spatial distribution of the 2 species based on genetic analyses of biopsy samples to derive separate abundance estimates (NMFS unpublished data; see below).

Earlier estimates

Please see appendix IV for a summary of abundance estimates including earlier estimates and survey descriptions. As recommended in the GAMMS II Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable for the determination of the current PBR. Due to changes in survey methodology, these historical data should not be used to make comparisons with more current estimates.

Recent surveys and abundance estimates for *Globicephala sp.*

An imprecise abundance estimate of 16,058 (CV=0.79) pilot whales was generated from the Canadian Trans-North Atlantic Sighting Survey (TNASS) in July–August 2007 (Lawson and Gosselin 2011). This aerial survey covered the area from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimation of the abundance was based on the independent-observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009). Estimates from this survey were corrected using the g(0) values obtained from the integration of perception and availability biases (Tables 1 and 2 in Lawson and Gosselin 2011), or using g(0) values from Palka (2012). This survey covered habitats expected to contain long-finned pilot whales exclusively.

An abundance estimate of 11,865 (CV=0.57) *Globicephala sp.* was generated from aerial and shipboard surveys conducted during June–August 2011 between central Virginia and the lower Bay of Fundy (Palka 2012). The aerial portion covered 6,850 km of tracklines over waters north of New Jersey between the coastline and the 100-m depth contour through the U.S. and Canadian Gulf of Maine, and up to and including the lower Bay of Fundy. Pilot whales were not observed during the aerial portion of the survey. The shipboard portion covered 3,811 km of tracklines between central Virginia and Massachusetts in waters deeper than the 100-m depth contour out to beyond the U.S. EEZ. Both sighting platforms used a double-platform data-collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers 2004). Estimation of the abundance was based on the independent-observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009). The vessel portion of this survey included habitats where both short-finned and long-finned pilot whales occur. The estimated abundance of long-finned pilot whales from this survey was 5,636 (CV=0.63).

An abundance estimate of 16,946 (CV=0.43) *Globicephala sp.* was generated from a shipboard survey conducted concurrently (June-August 2011) in waters between central Virginia and central Florida. This shipboard survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed two independent visual teams searching with 25× bigeye binoculars. A total of 4,445 km of tracklines was surveyed, yielding 290 cetacean sightings. The majority of sightings occurred along the continental shelf break north of Cape Hatteras, North Carolina, with a lower number of sightings over the continental slope in the southern portion of the survey. Estimation of the abundance was based on the independent-observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009). This survey included habitats where only short-finned pilot whales are expected to occur.

Spatial Distribution and Abundance Estimates for *Globicephala melas*

Biopsy samples from pilot whales were collected during summer months (June–August) from South Carolina to the southern flank of Georges Bank between 1998 and 2007. These samples were identified to species using genetic analysis of mitochondrial DNA sequences. A portion of the mtDNA genome was sequenced from each biopsy
sample collected in the field, and genetic species identification was performed through phylogenetic reconstruction of the haplotypes. Stranded specimens that were morphologically identified to species were used to assign clades in the phylogeny to species and thereby identify all samples. The probability of a sample being from a long-finned (or short-finned) pilot whale was evaluated as a function of sea-surface temperature and water depth using logistic regression. This analysis indicated that the probability of a sample coming from a long-finned pilot whale was near 1 at water temperatures <22°C, and near 0 at temperatures >25°C. The probability of a long-finned pilot whale also decreased with increasing water depth. Spatially, during summer months, this regression model predicts that all pilot whales observed in offshore waters near the Gulf Stream are most likely short-finned pilot whales. The area of overlap between the 2 species occurs primarily along the shelf break off the coast of New Jersey between 38°N and 40°N latitude. This habitat model was used to partition the abundance estimates from surveys conducted during the summer of 2011. The sightings from the southeast shipboard survey covering waters from Florida to central Virginia were predicted to consist entirely of short-finned pilot whales. The aerial portion of the northeast surveys covered the Gulf of Maine and the Bay of Fundy and surveys where the model predicted that only long-finned pilot whales would occur, but no pilot whales were observed. The vessel portion of the northeast survey recorded a mix of both species along the shelf break, and the sightings in offshore waters near the Gulf Stream were predicted to consist predominantly of short-finned pilot whales. The abundance estimate for long-finned pilot whales from the northeast summer 2011 vessel survey was 5,636 (CV=0.63; NMFS unpublished data). The summer 2011 aerial survey of the Gulf of Maine to the Bay of Fundy did not include areas of the Scotian Shelf where the highest densities of pilot whales were observed in the summer of 2006, therefore the 2011 summer surveys are an underestimation of the overall abundance of this stock.

Table 1. Summary of recent abundance estimates for the western North Atlantic long-finned pilot whale (Globicephala melas melas) by month, year, and area covered during each abundance survey, and resulting abundance estimate (N_{best}) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>July-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>16,058</td>
<td>0.79</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>central Virginia to Lower Bay of Fundy</td>
<td>5,636</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for western North Atlantic long-finned pilot whales is 5,636 animals (CV=0.63). The minimum population estimate for long-finned pilot whales is 3,464.

Current Population Trend

A trend analysis has not been conducted for this stock. There are 2 abundance estimates for Globicephala spp. from summer 1998 (14,909; CV=0.26) and summer 2004 surveys (31,139; CV=0.27), and 1 abundance estimate of G. melas from summer 2011 surveys (5,636; CV=0.63). Because the 1998 and 2004 surveys did not derive separate abundance estimates for each pilot whale species, comparisons to the 2011 estimate are inappropriate.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for long-finned pilot whales is 3,464. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor is 0.5 because this stock is of unknown status relative to OSP and the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic long-finned pilot whale is 35.
ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total annual observed average fishery-related mortality or serious injury during 2009–2013 was 31 for long-finned pilot whales (CV=0.14; see Table 2). In bottom trawls and mid-water trawls and in the gillnet fisheries, mortalities were more generally observed north of 40°N latitude and in areas expected to have a higher proportion of long-finned pilot whales. Takes in these fisheries were examined individually using model-based predictions, and in all cases these animals were assigned as long-finned pilot whales. Based on biopsy and photo-identification data, it is likely that the recent bycatch of pilot whales in the pelagic longline fishery is restricted to short-finned pilot whales.

Fishery Information

The commercial fisheries that could potentially interact with this stock in the Atlantic Ocean are the Category I northeast sink gillnet and the Atlantic Ocean, Caribbean, Gulf of Mexico large pelagic longline fisheries; and the Category II northeast bottom trawl and northeast mid-water trawl (including pair trawl) fisheries. Detailed fishery information is reported in Appendix III.

Earlier Interactions

Historically, fishery interactions have been documented with pilot whales in the Atlantic pelagic drift gillnet fishery, Atlantic tuna pair trawl and tuna purse seine fisheries, northeast and mid-Atlantic gillnet fisheries, northeast and mid-Atlantic bottom trawl fisheries, northeast midwater trawl fishery, and the pelagic longline fishery. See Appendix V for more information on historical takes.

Northeast Sink Gillnet

One pilot whale was caught in this fishery in 2010. According to modeled species distribution, this whale was a long-finned pilot whale. See Table 2 for bycatch estimates and observed mortality and serious injury for the current 5-year period, and Appendix V for historical bycatch information.

Pelagic Longline

Most of the estimated marine mammal bycatch in the U.S. pelagic longline fishery was recorded in U.S. Atlantic EEZ waters between South Carolina and Cape Cod (Garrison 2007). Bycatch of long-finned pilot whales has occurred in the past. However, available seasonal biopsy data and genetic analyses indicate that recent pilot whale bycatch in the pelagic longline fishery is restricted to short-finned pilot whales, therefore the mortality and serious injury due to the pelagic longline fishery is not included in the estimated mortality of the long-finned pilot whale.

Northeast Bottom Trawl

New serious injury criteria were applied to all observed interactions retroactive during 2007–2011 and annually since 2012 (Waring et al. 2014, 2015, Wenzel et al. 2015; see Table 2). In addition to takes observed by fisheries observers, the Marine Mammal Authorization Program (MMAP) (http://www.nmfs.noaa.gov/pr/interactions/mmap/) included 2 self-reported incidental takes (mortalities) of pilot whales in bottom trawl gear off Maine and Massachusetts during 2008, and 2 self-reported incidental takes (mortalities) in trawl gear off Maine and Rhode Island during 2011. Fishery-related bycatch rates for years 2009–2013 were estimated using an annual stratified ratio-estimator. These mortality estimates replace the 2008–2011 annual estimates reported in the 2013 stock assessment report that were generated using a different method described in Rossman (2010). See Table 2 for bycatch estimates and observed mortality and serious injury for the current 5-year period, and Appendix V for historical bycatch information.

Northeast Mid-Water Trawl (Including Pair Trawl)

In September 2011, one pilot whale was taken in the northeast mid-water trawl fishery on the northern flank of Georges Bank. Another pilot whale was taken in a mid-water trawl in 2012. Three were taken in 2013 near the western edge of Georges Bank. Using model-based predictions, these takes have all been assigned as long-finned pilot whales. Due to small sample sizes, the ratio method was used to estimate the bycatch rate (observed takes per observed hours the gear was in the water) for each year, where the paired and single northeast mid-water trawls were pooled and only hauls that targeted herring or mackerel were used. The VTR herring and mackerel data were used to estimate the total effort. Estimated annual fishery-related mortalities were 0 in 2009 to 2010 (Table 2). Expanded estimates of fishery mortality for 2011, 2012, and 2013 are not available, and so for those years the raw number is
provided. See Table 2 for bycatch estimates and observed mortality and serious injury for the current 5-year period, and Appendix V for historical bycatch information.

CANADA

Unknown numbers of long-finned pilot whales have been taken in Newfoundland, Labrador, and Bay of Fundy groundfish gillnets; Atlantic Canada and Greenland salmon gillnets; and Atlantic Canada cod traps (Read 1994).

Table 2. Summary of the incidental mortality and serious injury of long-finned pilot whales (*Globicephala melas melas*) by commercial fishing including the years sampled (Years), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the observed mortalities and serious injuries recorded by onboard observers, the estimated annual mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined estimates (Est. CVs) and the mean of the combined estimates (CV in parentheses). These are minimum observed counts as expanded estimates are not available.

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Serious Injury</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Est. CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink Gillnet</td>
<td>09-13</td>
<td>Obs. Data, Logbook, Dealer Data</td>
<td>.04, .17, .19, .15, .11</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 1, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 3, 0, 0, 0</td>
<td>0, 3, 0, 0, 0</td>
<td>.82, 0, 0, 0</td>
<td>0.6 (0.82)</td>
</tr>
<tr>
<td>Northeast Bottom Trawl b</td>
<td>09-13</td>
<td>Obs. Data Logbook</td>
<td>.09, .16, .26, .17, .15</td>
<td>2, 1, 3, 3, 0</td>
<td>1, 9, 9, 7, 4</td>
<td>3, 6, 12, 10, 0</td>
<td>10, 24, 43, 23, 16</td>
<td>13, 30, 55, 33, 16</td>
<td>.70, .43, .18, .32, .42</td>
<td>29.4 (0.15)</td>
</tr>
<tr>
<td>Northeast Mid-Water Trawl c, Including Pair Trawl</td>
<td>09-13</td>
<td>Obs. Data Dealer Data VTR Data</td>
<td>.42, .41, .17, .45, .37</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 1, 1, 3</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 1, 1, 3</td>
<td>0, 0, 1, 1, 3</td>
<td>na, na, na, na, na</td>
<td>1.0 (na)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31 (0.14)</td>
<td></td>
</tr>
</tbody>
</table>

Observer data (Obs. Data) are used to measure bycatch rates and the data are collected within the Northeast Fisheries Observer Program (NEFOP). NEFSC collects landings data (unallocated Dealer Data and Allocated Dealer Data) which are used as a measure of total landings and mandatory Vessel Trip Reports (VTR) (Trip Logbook) are used to determine the spatial distribution of landings and fishing effort. Total landings are used as a measure of total effort for the coastal gillnet fishery.

The observer coverages for the northeast sink gillnet fishery are ratios based on tons of fish landed. Northeast bottom trawl and northeast midwater trawl fishery coverages are ratios based on trips. Total observer coverage reported for gillnet and bottom trawl gear in the years starting in 2010 include samples collected from traditional fisheries observers in addition to fishery at-sea monitors through the Northeast Fisheries Observer Program (NEFOP). For 2010 only the NEFOP observed data were reported in this table, since the at-sea monitoring program just started in May 2010. Both at-sea monitor and traditional fisheries observer data were used for 2011 and onwards

Fishery related bycatch rates for years 2009–2013 were estimated using an annual stratified ratio-estimator. c Expanded estimates for 2009–2013 are not available for this fishery.

Other Mortality

Pilot whales have a propensity to mass strand throughout their range, but the role of human activity in these events is unknown. From 2009 to 2013, 44 short-finned pilot whales (*Globicephala macrorhynchus*), 34 long-finned pilot whales (*Globicephala melas melas*), and 6 pilot whales not specified to the species level (*Globicephala* sp.) were reported stranded between Maine and Florida, including the Exclusive Economic Zone (EEZ) (Table 3).

Short-finned pilot whales strandings have been reported stranded as far north as Block Island, Rhode Island (2001); and Cape Cod, Massachusetts (2011), although the majority of the strandings occurred from North Carolina southward (Table 3). Long-finned pilot whales have been reported stranded as far south as Florida, where 2 long-finned pilot whales were reported stranded in Florida in November 1998, though their flukes had been apparently cut off, so it is unclear where these animals actually may have died. One additional long-finned pilot whale stranded...
in South Carolina in 2003, though the confidence in the species identification was only moderate. A genetic sample from this animal has subsequently been sequenced and mitochondrial DNA analysis supports the long-finned pilot whale identification.

During 2009–2013, several human and/or fishery interactions were documented in stranded pilot whales within the U.S. EEZ. One long-finned pilot whale that strangled in Massachusetts in 2009 was classified as a fishery interaction because it had a piece of monofilament line in its stomach. A short-finned pilot whale stranded in North Carolina in 2010 had evidence of longline interaction. Two long-finned pilot whale stranding mortalities in 2011 in Massachusetts were classified as human interaction cases, one due to onlookers trying to refloat the animal, and another with tow rope around the tail most likely tied on postmortem. Also in 2011, a short-finned pilot whale in North Carolina was classified as a fishery interaction and a short-finned pilot whale in New Jersey was found with a healed but abscessed bullet wound. In 2012, 3 short-finned pilot whales had evidence of fishery interaction, two of them in South Carolina and one in North Carolina. During 2013 no evidence of human interaction was documented for stranded pilot whales.

Table 3. Pilot whale (Globicephala macrocephalus [SF], Globicephala melas melas [LF] and Globicephala sp. [Sp]) strandings along the Atlantic coast, 2009–2013. Strandings which were not reported to species have been reported as Globicephala sp. The level of technical expertise among stranding network personnel varies, and given the potential difficulty in correctly identifying stranded pilot whales to species, reports to specific species should be viewed with caution.

<table>
<thead>
<tr>
<th>STATE</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SF</td>
<td>LF</td>
<td>Sp</td>
<td>SF</td>
<td>LF</td>
<td>Sp</td>
</tr>
<tr>
<td>Nova Scotia³</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Newfoundland and Labrador⁵</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maine</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Massachusetts³</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New York</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New Jersey</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maryland</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Virginia⁴</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>North Carolina⁴</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>South Carolina⁴</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Florida⁶</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTALS - U.S. & EEZ</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

³ Data supplied by Nova Scotia Marine Animal Response Society (pers. comm.). Strandings in 2011 include one mass stranding of 6-8 whales (one of which died) and 2 animals with ropes tied around their tail stocks. Strandings in 2013 include one fishery entanglement (bait net) and one mass stranding of 4 animals.
⁵ One of the 2009 animals was classified as a fishery interaction.
⁶ Signs of fishery interactions were observed on one short-finned pilot whale stranded in 2010 and one stranded in 2011, both in North Carolina. Signs of fishery interaction were observed on one short-finned pilot whale in North Carolina and two in South Carolina in 2012. A mass stranding of 3 whales occurred in South Carolina in 2012.
A mass stranding of 3 whales occurred in 2010, and a mass stranding of 2 whales in 2011.

Stranding data probably underestimate the extent of human and fishery-related mortality and serious injury, particularly for offshore species such as pilot whales, because not all of the whales that die or are seriously injured in human interactions wash ashore, or, if they do, they are not all recovered (Peltier et al. 2012; Wells et al. 2015). Additionally, not all carcasses will show evidence of human interaction, entanglement or other fishery-related interaction due to decomposition, scavenger damage, etc. (Byrd et al. 2014). Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interaction.

HABITAT ISSUES

A potential human-caused source of mortality is from polychlorinated biphenyls (PCBs) and chlorinated pesticides (DDT, DDE, dieldrin, etc.), moderate levels of which have been found in pilot whale blubber (Taruski et al. 1975; Muir et al. 1988; Weisbrod et al. 2000). Weisbrod et al. (2000) reported that bioaccumulation levels were more similar in whales from the same stranding group than in animals of the same sex or age. Also, high levels of toxic metals (mercury, lead, cadmium) and selenium were measured in pilot whales harvested in the Faroe Island drive fishery (Nielsen et al. 2000). Similarly, Dam and Bloch (2000) found very high PCB levels in pilot whales in the Faroes. The population effect of the observed levels of such contaminants is unknown.

STATUS OF STOCK

The long-finned pilot whale is not listed as threatened or endangered under the Endangered Species Act, and the western North Atlantic stock is not considered strategic under the Marine Mammal Protection Act. Total U.S. fishery-related mortality and serious injury for long-finned pilot whales does not exceed PBR but is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown. There are insufficient data to determine the population trends for this stock.

REFERENCES CITED

