FIN WHALE (*Balaenoptera physalus*): California/Oregon/Washington Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The International Whaling Commission (IWC) recognized two stocks of fin whales in the North Pacific: the East China Sea and the rest of the North Pacific (Donovan 1991). Mizroch et al. (1984) cites evidence for additional fin whale subpopulations in the North Pacific. From whaling records, fin whales that were marked in winter 1962-70 off southern California were later taken in commercial whaling operations between central California and the Gulf of Alaska in summer (Mizroch et al. 1984). More recent observations show aggregations of fin whales year-round in southern/central California (Dohl et al. 1983; Barlow 1997; Forney et al. 1995), year-round in the Gulf of California (Tershy et al. 1993), in summer in Oregon (Green et al. 1992; McDonald 1994), and in summer/autumn in the Shelikof Strait/Gulf of Alaska (Brueggeman et al. 1990). Acoustic signals from fin whale are detected year-round off northern California, Oregon and Washington, with a concentration of vocal activity between September and February (Moore et al. 1998). Fin whales appear very scarce in the eastern tropical Pacific in summer (Wade and Gerrodette 1993) and winter (Lee 1993).

There is still insufficient information to accurately determine population structure, but from a conservation perspective it may be risky to assume panmixia in the entire North Pacific. In the North Atlantic, fin whales were locally depleted in some feeding areas by commercial whaling (Mizroch et al. 1984), in part because subpopulations were not recognized. This assessment will cover the stock of fin whales which is found along the coasts of California, Oregon, and Washington. Because fin whale abundance appears lower in winter/spring in California (Dohl et al. 1983; Forney et al. 1995) and in Oregon (Green et al. 1992), it is likely that the distribution of this stock extends seasonally outside these coastal waters. Genetic studies of the fin whales have shown that the population in the Gulf of California is isolated from fin whales in the rest of the eastern North Pacific and is an evolutionary unique population (Bérubé et al. 2002). The Marine Mammal Protection Act (MMPA) stock assessment reports recognize three stocks of fin whales in the North Pacific: 1) the California/Oregon/Washington stock (this report), 2) the Hawaii stock, and 3) the Alaska stock.

POPULATION SIZE

The initial pre-whaling population of fin whales in the North Pacific was estimated to be 42,000-45,000 (Ohsumi and Wada 1974). In 1973, the North Pacific population was estimated to have been reduced to 13,620-18,680 (Ohsumi and Wada 1974), of which 8,520-10,970 were estimated to belong to the eastern Pacific stock. A minimum of 148 individually-identified fin whales are found in the Gulf of California (Tershy et al. 1990). Recently 3,279 (CV = 0.31) fin whales were estimated to be off California, Oregon and Washington based on ship surveys in summer/autumn of 1996 (Barlow and Taylor 2001) and 2001 (Barlow 2003). This is probably a slight underestimate because it almost certainly excludes some fin whales which could not be identified in the field and which were recorded as “unidentified rorqual” or “unidentified large whale”.

Figure 1. Fin whale sighting locations based on aerial and shipboard surveys off California, Oregon, and Washington, 1991-2001 (see Appendix 2 for data sources and information on timing and location of surveys). Dashed line represents the U.S. EEZ; bold line indicates the outer boundary of all surveys combined.
Minimum Population Estimate

The minimum population estimate for fin whales is taken as the lower 20th percentile of the log-normal distribution of abundance estimated from 1996 and 2001 summer/fall ship surveys (Barlow and Taylor 2001; Barlow 2003) or approximately 2,541.

Current Population Trend

There is some indication that fin whales have increased in abundance in California coastal waters between 1979/80 and 1991 (Barlow 1994) and between 1991 and 1996 (Barlow 1997), but these trends are not significant. Although the population in the North Pacific is expected to have grown since receiving protected status in 1976, the possible effects of continued unauthorized take (Yablokov 1994) and incidental ship strikes and gillnet mortality make this uncertain.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

There are no estimates of the growth rate of fin whale populations in the North Pacific (Best 1993).

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (2,541) times one half the default maximum net growth rate for cetaceans (% of 4%) times a recovery factor of 0.3 (for an endangered species, with $N_{min} > 1,500$ and $CV_{N_{min}} < 0.50$), resulting in a PBR of 15.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Historic Whaling

Approximately 46,000 fin whales were taken from the North Pacific by commercial whalers between 1947 and 1987 (C. Allison, IWC, pers. comm.), including 1,060 fin whales taken by coastal whalers in central California between 1958 and 1965 (Rice 1974). In addition, approximately 3,800 were taken off the west coast of North America between 1919 and 1929 (Tonnessen and Johnsen 1982), and 177 were taken by coastal whalers off California between 1919 and 1926 (Clapham et al. 1997). Fin whales in the North Pacific were given protected status by the IWC in 1976.

Fisheries Information

The offshore drift gillnet fishery is the only fishery that is likely to take fin whales from this stock, and one fin whale death has been observed (Table 1). Detailed information on this fishery is provided in Appendix 1. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). Mean annual takes for this fishery (Table 1) are based on 1997-2001 data. This results in an average estimate of 1.0 fin whales taken annually. Some gillnet mortality of large whales may go unobserved because whales swim away with a portion of the net; however, fishermen report that large rorquals (blue and fin whales) usually swim through nets without entangling and with very little damage to the nets.

Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternatingly using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002).
Table 1. Summary of available information on the incidental mortality and injury of fin whales (CA/OR/WA stock) for commercial fisheries that might take this species (Cameron and Forney 1999, 2000; Carretta 2001, 2002).

<table>
<thead>
<tr>
<th>Fishery Name</th>
<th>Year(s)</th>
<th>Data Type</th>
<th>Percent Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Mortality (CV in parentheses)</th>
<th>Mean Annual Takes (CV in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA/OR thresher shark/swordfish drift gillnet fishery</td>
<td>1997</td>
<td>observer data</td>
<td>23.0%</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td></td>
<td>20.0%</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td></td>
<td>20.0%</td>
<td>1</td>
<td>5 (0.94)</td>
<td>1 (0.94)</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td></td>
<td>22.9%</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td></td>
<td>20.4%</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Average annual takes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 (0.94)</td>
</tr>
</tbody>
</table>

Ship Strikes

Ship strikes were implicated in the deaths of one fin whale in 1997 and 2001 (J. Heyning and J. Cordaro, Southwest Region, NMFS, pers. comm.). During 1997-2001, there were an additional 4 injuries and 2 mortalities of unidentified large whales attributed to ship strikes. Additional mortality from ship strikes probably goes unreported because the whales do not strand or, if they do, they do not always have obvious signs of trauma. The average observed annual mortality due to ship strikes is 0.4 fin whales per year for the period 1997-2001.

STATUS OF STOCK

Fin whales in the entire North Pacific were estimated to be at less than 38% (16,625 out of 43,500) of historic carrying capacity (Mizroch et al. 1984). The initial abundance has never been estimated separately for the "west coast" stock, but this stock was also probably depleted by whaling. Fin whales are formally listed as "endangered" under the Endangered Species Act (ESA), and consequently the California to Washington stock is automatically considered as a "depleted" and "strategic" stock under the MMPA. The total incidental mortality due to fisheries (1.0/yr) and ship strikes (0.4/yr) appears to be less than the calculated PBR (15). Total fishery mortality is less than 10% of PBR and, therefore, may be approaching zero mortality and serious injury rate. There is some indication that the population may be growing. The increasing levels of anthropogenic noise in the world's oceans has been suggested to be a habitat concern for whales, particularly for baleen whales that may communicate using low-frequency sound (Croll et al. 2002).

REFERENCES

Berdégüé, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos.
A.C. Mazatlán, Sinaloa, 21 de septiembre.