BLUE WHALE (Balaenoptera musculus): Eastern North Pacific Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The International Whaling Commission (IWC) has formally considered only one management stock for blue whales in the North Pacific (Donovan 1991), but now this ocean is thought to include more than one population (Ohsumi and Wada 1972; Braham 1991), possibly as many as five (Reeves et al. 1998). This report covers one population that feeds in California waters in summer/fall (from June to November) and migrates south to productive areas off Mexico (Calambokidis et al. 1990) and as far south as the Costa Rica Dome (10° N) (Mate et al. 1999; Calambokidis, pers. comm.) in winter/spring. Blue whales are occasionally seen or heard off Oregon (McDonald et al. 1994, Stafford et al. 1998; VonSaunder and Barlow 1999), but sightings there are rare. Reilly and Thayer (1990) speculate that blue whales found near the Costa Rica Dome from June to November are likely to be part of a southern hemisphere population or an isolated resident population; however, based on acoustic call similarities, Stafford et al. (1999) linked these animals to the population that feeds off California at the same time of year. Rice (1974) hypothesized that blue whales from Baja California migrated far offshore to feed in the eastern Aleutians or Gulf of Alaska and returned to feed in California waters; however, he has more recently concluded that the California population is separate from the Gulf of Alaska population (Rice 1992). Recently, blue whale feeding aggregations have not been found in Alaska despite several surveys (Leatherwood et al. 1982; Stewart et al. 1987; Forney and Brownell 1996). One other stock of North Pacific blue whales (in Hawaiian waters) is recognized in the Marine Mammal Protection Act (MMPA) Stock Assessment Reports.

POPULATION SIZE

The size of the feeding stock of blue whales in California was estimated recently by both line-transect and mark-recapture methods. Barlow (2003) estimates 1,736 (CV=0.23) blue whales off California, Oregon, and Washington based on ship line-transect surveys in 1996 and 2002. Calambokidis et al. (2002) used photographic mark-recapture and estimated population sizes of 744 (CV=0.58) based on 2000-2001 photographs of left sides and 1,251 (CV=0.51) based on right sides. The average of the mark-recapture estimates 998 (CV=0.55) is considerably less than the line-transect estimate but is not significantly different in a statistical sense. Mark-recapture estimates are often negatively biased by individual heterogeneity in sighting probabilities (Hammond 1986); however, Calambokidis and Steiger (1994) minimize such effects by selecting one sample that was taken randomly with respect to distance from the coast. Similarly, the line-transect estimates may also be negatively biased because some blue whales in this stock are probably along Baja California and, therefore, out of the study area at the time of survey (Wade and Gerrodette 1993). The best estimate of blue whale abundance is the average of the line-transect and mark-recapture estimates, weighted by the inverse of their variances, or 1,480 (CV=0.32).

Minimum Population Estimate

The minimum population estimate for blue whales is taken as the lower 20th percentile of the log-normal distribution of abundance estimated from the combined mark-recapture and line-transect estimates, or approximately
Current Population Trend

There is some indication that blue whales have increased in abundance in California coastal waters between 1979/80 and 1991 (regression p<0.05, Barlow 1994) and between 1991 and 1996 (not significant, Barlow 1997). Although this may be due to an increase in the stock as a whole, it could also be the result of an increased use of California as a feeding area. The size of the apparent increase abundance seen by Barlow (1994) is too large to be accounted for by population growth alone. Also, Larkman and Veit (1998) did not detect any increase along consistently surveyed tracklines in the Southern California Bight from 1987 to 1995. Although the population in the North Pacific is expected to have grown since being given protected status in 1966, the possibility of continued unauthorized takes after blue whales were protected (Yablokov 1994) and the existence of incidental ship strikes and gillnet mortality makes this uncertain. Estimates made by Calambokidis et al. (2002) and Barlow (2003) declined in 2000/2001 compared to previous years, but sample sizes were small and this apparent decline may not be real.

Current and Maximum Net Productivity Rates

No information exists on the rate of growth of blue whale populations in the Pacific (Best 1993).

Potential Biological Removal

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (1,138) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.1 (for an endangered species), resulting in a PBR of 2.3. Because this stock spends approximately half its time outside the U.S. EEZ, the PBR allocation for U.S. waters is half this total, or 1.2 whales per year.

Human-Caused Mortality and Serious Injury

Historic Whaling

The reported take of North Pacific blue whales by commercial whalers totaled 9,500 between 1910 and 1965 (Ohsumi and Wada 1972). Approximately 2,000 were taken off the west coast of North America between 1919 and 1929 (Tonnessen and Johnsen 1982). Partially overlapping with this is Rice's (1992) report of at least 1,378 taken by factory ships off California and Baja California between 1913 and 1937. Between 1947 and 1987, reported takes of blue whales in the North Pacific were approximately 2,400. Shore-based whaling stations in central California took 3 blue whales between 1919 and 1926 (Clapham et al. 1997) and 48 blue whales between 1958 and 1965 (Rice 1974). Blue whales in the North Pacific were given protected status by the IWC in 1966.

Fisheries Information

The offshore drift gillnet fishery is the only fishery that is likely to take blue whales from this stock, but no fishery mortalities or serious injuries have been observed (Table 1). Detailed information on this fishery is provided in Appendix 1. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). Mean annual takes for this fishery (Table 1) are based on 1997-2001 data. This results in an average estimate of zero blue whales taken annually. Some gillnet mortality of large whales may go unobserved because whales swim away with a portion of the net; however, fishermen report that large rorquals (blue and fin whales) usually swim through nets without entangling and with very little damage to the nets.

Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type
Table 1. Summary of available information on the incidental mortality and injury of blue whales (Eastern North Pacific stock) for commercial fisheries that might take this species (Julian 1997; Julian and Beeson 1998; Cameron and Forney 1999, 2000; Carretta 2001, 2002). Mean annual takes are based on 1997-2001 data unless noted otherwise.

<table>
<thead>
<tr>
<th>Fishery Name</th>
<th>Year(s)</th>
<th>Data Type</th>
<th>Percent Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Mortality (CV in parentheses)</th>
<th>Mean Annual Takes (CV in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA/OR thresher shark/swordfish drift gillnet fishery</td>
<td>1997</td>
<td>observer</td>
<td>23.0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>data</td>
<td>20.0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>data</td>
<td>20.0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>data</td>
<td>22.9%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>data</td>
<td>20.4%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total annual takes</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Ship Strikes
Ship strikes were implicated in the deaths of blue whales in 1980, 1986, 1987, and 1993 (J. Cordaro, Southwest Region, NMFS and J. Heyning, pers. comm.). During 1997-2001, there were an additional 4 injuries and 2 mortalities of unidentified large whales attributed to ship strikes. Additional mortality from ship strikes probably goes unreported because the whales do not strand or, if they do, they do not always have obvious signs of trauma. Several blue whales have been photographed in California with large gashes in their dorsal surface that appear to be from ship strikes (J. Calambokidis, pers. comm.). The average number of blue whale mortalities in California attributed to ship strikes was 0.0 per year for 1997-2001.

STATUS OF STOCK
Previously, blue whales in the entire North Pacific were estimated to be at 33% (1,600 out of 4,900) of historic carrying capacity (Mizroch et al. 1984). The initial abundance has never been estimated separately for the "eastern" stock, but this stock was almost certainly depleted by whaling. Blue whales are formally listed as "endangered" under the Endangered Species Act (ESA), and consequently the Eastern North Pacific stock is automatically considered as a "depleted" and "strategic" stock under the MMPA. The annual incidental mortality from ship strikes is apparently less than the calculated PBR for this stock. To date, no blue whale mortality has been associated with California gillnet fisheries; therefore, total fishery mortality is approaching zero mortality and serious injury rate. The population appears to be growing. The increasing levels of anthropogenic noise in the world’s oceans has been suggested to be a habitat concern for blue whales (Reeves et al. 1998).

REFERENCES
Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038.
McDonald, M. A., J. A. Hildebrand, and S. C. Webb. 1994. Blue and fin whales observer on a seafloor array in the
Northeast Pacific. (unpubl. ms.).
46:15-19.
(*Balaenoptera musculus*). Office of Protected Resources, NMFS, NOAA, Silver Spring, Maryland. 30 pp.
Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep.
Int. CICESE, CTECT9306.
Stafford, K. M., C. G. Fox, and D. S. Clark. 1998. Long-range acoustic detection and localization of blue whale calls
Angeles. 798 pp.