FALSE KILLER WHALE (*Pseudorca crassidens*):
Pacific Islands Region Stock Complex - Hawaii Insular,
Hawaii Pelagic and Palmyra Atoll Stocks

STOCK DEFINITIONS AND GEOGRAPHIC RANGES

False killer whales are found worldwide mainly in tropical and warm-temperate waters (Stacey et al. 1994). In the North Pacific, this species is well known from southern Japan, Hawaii, and the eastern tropical Pacific. There are six stranding records from Hawaiian waters (Nitta 1991; Maldini 2005). One on-effort sighting of false killer whales was made during a 2002 shipboard survey, and six during the 2010 shipboard survey of waters within the U.S. Exclusive Economic Zone (EEZ) of the Hawaiian Islands (Figure 1; Barlow 2006, NMFS unpublished data). Group size ranged from 1 to 52 false killer whales during the 2010 survey. Smaller-scale surveys conducted around the main Hawaiian Islands (Figure 2) show that false killer whales are also encountered in nearshore waters (Baird et al. 2005, Mobley et al. 2000, Mobley 2001, 2002, 2003, 2004). This species also occurs in U.S. EEZ waters around Palmyra Atoll (Figure 1), Johnston Atoll (NMFS/PIR/PSD unpublished data), and American Samoa (Johnston et al. 2008, Oleson 2009). Genetic analyses of tissue samples collected within the Indo-Pacific indicate restricted gene flow between false killer whales sampled near the main Hawaiian Islands and false killer whales sampled in all other regions (Chivers et al. 2007, 2010). The recent update from Chivers et al. (2010) included additional samples and analysis of 8 nuclear DNA (nDNA) microsatellites, revealing strong phylogeographic patterns that are consistent with local evolution of haplotypes that are nearly unique to the separate insular population around the main Hawaiian Islands. Further, the recent analysis revealed significant differentiation, in both mitochondrial and nDNA, between pelagic false killer whales in the Eastern (ENP) and Central North Pacific (CNP) strata defined in Chivers et al. (2010), although the sample distribution to the east and west of Hawaii is insufficient to determine whether the sampled strata represent one or more stocks, and where stock boundaries would be drawn. An additional 24 samples collected during the 2010 shipboard survey in pelagic Hawaiian waters are currently being analyzed and will be used to further evaluate stock identity and boundaries. Since 2003, observers of the Hawaii-based longline fishery have been collecting tissue samples of caught cetaceans for genetic analysis whenever possible. Between 2003 and 2010, eight false killer whale samples, four collected outside the Hawaiian EEZ and four collected within the EEZ but more than 100 nautical miles (185km) from the main Hawaiian Islands (see Figure 3), were determined to have Pacific pelagic haplotypes (Chivers et al. 2010). Recent satellite telemetry studies, boat-based surveys, and photo-identification analyses of false killer whales around Hawaii have demonstrated that the insular and pelagic false killer whale stocks have overlapping ranges, rather than a clear separation in distribution. Insular false killer whales have been documented as far as 112 km from the main Hawaiian Islands, and pelagic stock animals have been documented as close as 42 km to the islands (Baird et al. 2010).
al. 2008, Baird 2009, Baird et al. 2010, Forney et al. 2010). Based on a review of new information (Forney et al. 2010), the 2010 stock assessment report recognized a new, overlapping stock structure for insular and pelagic stocks of false killer whales around Hawaii: animals within 40 km of the main Hawaiian Islands are considered to belong to the insular stock; animals beyond 140 km of the main Hawaiian Islands are considered to belong to the pelagic stock, and the two stocks overlap between 40 km and 140 km from shore (Figure 2).

The pelagic stock includes animals found both within the Hawaiian Islands EEZ and in adjacent international waters; however, because data on false killer whale abundance, distribution, and human-caused impacts are largely lacking for international waters, the status of this stock is evaluated based on data from U.S. EEZ waters of the Hawaiian Islands (NMFS 2005). The Palmyra Atoll stock of false killer whales remains a separate stock, because comparisons amongst false killer whales sampled at Palmyra Atoll and those sampled from the insular stock of Hawaii and the pelagic ENP revealed restricted gene flow, although the sample size remains low for robust comparisons (Chivers et al. 2007, 2010). NMFS will continue to obtain and analyze additional tissue samples for genetic studies of stock structure, and will evaluate new information on stock ranges as it becomes available.

For the Marine Mammal Protection Act (MMPA) stock assessment reports, there are currently four Pacific Islands Region management stocks (Chivers et al. 2008): 1) the Hawaii insular stock, which includes animals inhabiting waters within 140 km (approx. 75 nmi) of the main Hawaiian Islands, and 2) the Hawaii pelagic stock, which includes false killer whales inhabiting waters greater than 40 km (22 nmi) from the main Hawaiian Islands, 3) the Palmyra Atoll stock, which includes false killer whales found within the U.S. EEZ of Palmyra Atoll, and 4) the American Samoa stock, which includes false killer whales found within the U.S. EEZ of American Samoa. Estimates of abundance, potential biological removal, and status determinations for the first three stocks are presented below; the American Samoa Stock is covered in a separate report.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Interactions with cetaceans have been reported for Hawaii-based pelagic fisheries and false killer whales have been identified in fishermen's logs and NMFS observer records as taking catches from pelagic longlines (Nitta and Henderson 1993, NMFS/PIR unpublished data). False killer whales have also been observed feeding on mahi mahi, Coryphaena hippurus, and yellowfin tuna, Thunnus albacares, and they have been reported to take large fish (up to 70 pounds) from the trolling lines of both commercial and recreational fishermen (Shallenberger 1981). There are anecdotal reports of interactions with marine mammals in the commercial Hawaii shortline fishery, which was developed to target bigeye tuna, Thunnus obesus, and lustrous pomfret, Eumegistus illecebrus, at Cross Seamount and may also set gear around the main Hawaiian Islands. Fishing is permitted through the State of Hawaii Commercial Marine License program, and until recently there were no reporting systems in place to document marine mammal interactions. This fishery was added to the 2010 List of Fisheries as a Category II fishery (Federal Register Vol. 74, No. 219, p. 58859-58891, November 16, 2009), and efforts are underway to obtain further information on the extent of interactions between shortlines and marine mammals and to document the species involved. Baird and Gorgone (2005) documented a high rate of dorsal fin disfigurements that were consistent with injuries from unidentified fishing line for false killer whales belonging to the insular stock. At the present time, however, it is unknown whether these injuries might have been caused by longline gear, shortline gear, or other hook-and-line gear used around the main Hawaiian Islands. At this time there is no observer coverage for any hook-and-line fisheries.
operating in Hawaii waters, except the commercial longline fishery.

There are two distinct longline fisheries based in Hawaii: a deep-set longline (DSLL) fishery that targets primarily tunas, and a shallow-set longline fishery (SSLL) that targets swordfish. Both fisheries operate within U.S. waters and on the high seas, within the ranges of both insular and pelagic stocks. Between 2005 and 2009, two false killer whales were observed hooked or entangled in the SSLL fishery (100% observer coverage) within the U.S. EEZ of the Hawaiian Islands, and 24 false killer whales were observed taken in the DSLL fishery (≥20% observer coverage) (Forney 2010a, b). Two false killer whale takes in the DSLL fishery resulted in the death of the animal, one within the Hawaiian EEZ and the other in international waters. Based on an evaluation of the observer’s description of each interaction and following the most recently developed criteria for assessing serious injury in marine mammals (Andersen et al. 2008), one animal taken in the SSLL fishery was considered not seriously injured and one was considered seriously injured. In the DSLL fishery, one false killer whale taken within the overlap zone of the insular and pelagic stocks, one taken in Hawaiian waters within the range of the pelagic stock, and one taken in international waters were considered not seriously injured. For two false killer whales taken in the DSLL, one within the overlap zone of the insular and pelagic stocks and one taken in Hawaiian waters within the range of the pelagic stock, the level of injury could not be determined based on the observer descriptions. The remaining 17 false killer whales taken in the DSLL fishery (nine in international waters, seven in the Hawaiian Islands EEZ pelagic stock range, and one in the EEZ of Palmyra Atoll) were considered seriously injured (Forney 2010a,b). Nine additional unidentified cetaceans that may have been false killer whales were also seriously injured during 2005-2009 (Forney 2010a,b). Eight of these were taken in the DSLL fishery within U.S. EEZ waters, including two animals within the insular stock range, and one was taken in the SSLL fishery in international waters (Figure 3).

The total observed mortality and serious injury of cetaceans in the SSLL fishery (with 100% coverage), and the estimated annual and 5-yr average mortality and serious injury of cetaceans in the DSLL fishery (with approximately 20% coverage) are reported by McCracken (2010a,b). A number of recent changes are reflected in the methodology. All estimated takes of false killer whales, and observed takes for which an injury severity determination could not be made, are prorated based on the proportions of observed interactions that resulted in death or serious injury between the years 2000 and 2009 (92%), or non-serious injury (8%). Further, takes of false killer whales of unknown stock origin within the insular/pelagic stock overlap zone are prorated assuming that the density of the insular stock declines and the density of the pelagic stock increases with increasing distance from shore (McCracken 2010b). No genetic samples are available to establish stock identity for these takes, but both stocks are considered at risk of interacting with longline gear within this region. The pelagic stock is known to interact with longline fisheries in waters offshore of the overlap zone based on two genetic samples obtained by fishery observers (Chivers et al. 2008). Insular false killer whales have been documented to move sufficiently far offshore (112 km) to reach longline fishing areas, and animals from this stock have a high rate of dorsal fin disfigurements consistent with injuries from unidentified fishing line (Baird and Gorgone 2005). Based on these considerations, and as outlined in the NMFS Guidelines for Assessing Marine Mammal Stocks (NMFS 2005), bycatch within the overlap zone has been prorated based on the estimated densities of each stock (McCracken 2010a,b).
Finally, unidentified cetaceans, known to be either false killer whales or short-finned pilot whales (together termed “blackfish”), are prorated to each stock based on their distance from shore (McCracken 2010b). The distance-from-shore model was chosen following consultation with the Pacific Scientific Review Group based on the model’s performance and simplicity relative to a number of other more complicated models with similar output (see McCracken 2010b for more information). Proration of false killer whales takes within the overlap zone and of unidentified blackfish takes introduces additional uncertainty into the bycatch estimates, but until methods of determining stock identity for animals observed taken within the overlap zone are available, and all animals taken can be identified to species (e.g., photos, tissue samples), this approach ensures that potential impacts to all stocks are assessed.

Based on these bycatch analyses, estimates of annual and 5-yr average annual mortality and serious injury of false killer whales, by stock and EEZ area, are shown in Table 1. Estimates of mortality and serious injury include a pro-rated portion of the animals categorized as unidentified blackfish (UB). Although M&SI estimates are shown as whole numbers of animals, the 5-yr average M&SI is calculated based on the unrounded annual estimates.

Because of high rates of false killer whale mortality and serious injury in Hawaii-based longline fisheries, a Take-Reduction Team (TRT) was established in January 2010 (75 FR 2853, 19 January 2010). The scope of the TRT was to reduce mortality and serious injury in the Hawaii pelagic, Hawaii insular, and Palmyra stocks of false killer whales and across the DSLL and SSLL fisheries. The Team submitted a Draft Take-Reduction Plan to NMFS for consideration (Available at: http://www.nmfs.noaa.gov/pr/pdfs/interactions/fkwtrp_draft.pdf), and NMFS has recently proposed regulations based on this TRP (76 FR 42082, 18 July 2011).

Table 1. Summary of available information on incidental mortality and serious injury of false killer whales (Pacific Islands Stock Complex) and unidentified blackfish in commercial fisheries, by stock and EEZ area, as applicable (McCracken 2010a, 2010b). Mean annual takes are based on 2005-2009 estimates unless otherwise indicated. Information on all observed takes (T) and combined mortality events & serious injuries (MSI) is included. Total takes were prorated to deaths, serious injuries, and non-serious injuries based on the observed proportions of each outcome (see McCracken 2010a for details). Unidentified blackfish are pro-rated as either false killer whales or short-finned pilot whales according to their distance from shore (see McCracken 2010b for details). CVs are estimated based on the methods of McCracken & Forney (2010) and do not yet incorporate additional uncertainty introduced by prorating false killer whales in the overlap zone and prorating the unidentified blackfish.

<table>
<thead>
<tr>
<th>Fishery Name</th>
<th>Year</th>
<th>Data Type</th>
<th>Percent Observer Coverage</th>
<th>Obs. FKW T/MSI</th>
<th>Estimated M&SI (CV)</th>
<th>Obs. UB T/MSI</th>
<th>Estimated M&SI (CV)</th>
<th>Obs. FKW T/MSI</th>
<th>Estimated M&SI (CV)</th>
<th>Obs. UB T/MSI</th>
<th>Estimated M&SI (CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii-based deep-set longline fishery</td>
<td>2005</td>
<td></td>
<td>28%</td>
<td>1/1</td>
<td>3 (1.6)</td>
<td>1/1</td>
<td>3 (1.9)</td>
<td>0/0</td>
<td>1/1*</td>
<td>0.5 (-)</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>Observer data</td>
<td>22%</td>
<td>2/2</td>
<td>8 (0.7)</td>
<td>2/1*</td>
<td>13 (1.7)</td>
<td>2/1*</td>
<td>10*</td>
<td>2.2 (0.7)</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td></td>
<td>20%</td>
<td>1/0</td>
<td>2 (3.7)</td>
<td>0/0</td>
<td>0 (0)</td>
<td>0/0</td>
<td>0 (-)</td>
<td>0/0</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td></td>
<td>22%</td>
<td>0/0</td>
<td>0 (-)</td>
<td>4/3</td>
<td>17 (0.4)</td>
<td>0/0</td>
<td>0 (-)</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td></td>
<td>20%</td>
<td>7/7</td>
<td>39 (0.2)</td>
<td>2/2</td>
<td>12 (0.5)</td>
<td>0/0</td>
<td>0 (-)</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

| Mean Estimated Annual Takes (CV) | 10.4 (0.31) | 10.6 (0.4) | 0.6 (1.67) | 0.3 (1.67) |

<table>
<thead>
<tr>
<th>Hawaii-based shallow-set longline fishery</th>
<th>2005</th>
<th>Observer data</th>
<th>100%</th>
<th>0/0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>Observer data</td>
<td>100%</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>Observer data</td>
<td>100%</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>Observer data</td>
<td>100%</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>Observer data</td>
<td>100%</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>0/0</td>
<td>0/0</td>
<td>1/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

| Mean Annual Takes (100% coverage) | 0.1 | 0.2 | 0.6 (1.67) | 0.3 (1.67) |

* False killer whale and unidentified blackfish takes within the insular/pelagic stock overlap zone are shown once for each stock, but total estimates derived from these takes are prorated among potentially affected stocks based on the distance from shore of the take location (see text...
HAWAII INSULAR STOCK
POPULATION SIZE

A mark-recapture study of photo-identification data obtained during 2000-2004 around the main Hawaiian Islands produced an estimate of 123 (CV=0.72) insular false killer whales (Baird et al. 2005). This abundance estimate is based in part on data collected more than 8 years ago, and is considered outdated for estimating current abundance (NMFS 2005). A Status Review for the insular stock (Oleson et al. 2010) used recent, unpublished estimates for two time periods, 2000-2004 and 2006-2009 in their Population Viability Analysis (PVA). The new estimates were based on more recent sighting histories and open population models, yielding more precise estimates for the two time periods. Two separate estimates for 2006-2009 were presented in the Status Review, 151 (CV=0.20) and 170 (CV=0.21), depending on whether animals photographed near Kauai are included in the estimate, as these animals have not been seen to associate with others in the insular population (Baird unpublished data). The best estimate of population size is taken as the larger estimate including those animals seen near Kauai given the geographic range currently defined for this stock. However, it should be noted that this is an overestimate, because missed matches were discovered after the mark-recapture analyses were complete (discussed in Oleson et al. 2010). The best estimate will be updated when a new mark-recapture estimate accounting for the missed matches is available.

Minimum Population Estimate

The minimum population estimate for the insular stock of false killer whales is the number of distinct individuals identified during 2005-2009 photo-identification studies, 110 false killer whales (Baird, unpublished data). Recent mark-recapture estimates (Oleson et al. 2010) of abundance are known to have an upwards bias of unknown magnitude, and therefore are not suitable for deriving a minimum abundance estimate.

Current Population Trend

A recent study (Reeves et al. 2009) summarized information on false killer whale sightings near Hawaii between 1989 and 2007, based on various survey methods, and suggested that the insular stock of false killer whales may have declined during the last two decades. More recently, Baird (2009) reviewed trends in sighting rates of false killer whales from aerial surveys conducted using consistent methodology around the main Hawaiian Islands between 1994 and 2003 (Mobley et al. 2000, Mobley 2001, 2002, 2003, 2004). Sighting rates during these surveys exhibited a statistically significant decline that could not be attributed to any weather or methodological changes. The recent Status Review of Hawaiian insular false killer whales (Oleson et al. 2010) presented a quantitative analysis of extinction risk using a Population Viability Analysis (PVA). The modeling exercise was conducted to evaluate the probability of actual or near extinction, defined as fewer than 20 animals, given measured, estimated, or inferred information on population size and trends, and varying impacts of catastrophes, environmental stochasticity and Allee effects. A variety of alternative scenarios were evaluated, with all plausible models indicating the probability of decline to fewer than 20 animals within 75 years as greater than 20%. Though causation was not evaluated, all models indicated current declines at an average rate of -9% since 1989 (95% probability intervals -5% to -12.5%; Oleson et al. 2010).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No data are available on current or maximum net productivity rate for this species in Hawaiian waters. Obtaining information on rates of productivity for marine mammals is difficult (Wade 1998), and no estimate is available for this stock.

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for the insular false killer whale stock is calculated as the minimum population size (110) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.10 resulting in a PBR of 0.2 false killer whales per year. The recovery factor was chosen to be 0.1 because the stock has been proposed for listing as endangered under the U.S Endangered Species Act (see below) and because of the significant recent decline experienced by this stock (Oleson et al. 2010).

STATUS OF STOCK

The status relative to OSP of false killer whales belonging to the insular stock is unknown, although this stock appears to have declined during the past two decades (Oleson et al. 2010, Reeves et al. 2009; Baird 2009). A recent study (Ylitalo et al. 2009) documented elevated levels of polychlorinated biphenyls (PCBs) in three of nine insular false killer whales sampled, and biomass of some false killer whale prey species may have declined around
the main Hawaiian Islands (Oleson et al. 2010, Boggs & Ito 1993, Reeves et al. 2009). Insular false killer whales have been proposed for listing as “endangered” under the Endangered Species Act (1973) (75 FR 70169, 17 November 2010). The proposed listing follows receipt of a petition from the Natural Resources Defense Council on October 1, 2009, requesting that Hawaiian insular false killer whales be listed as endangered under the ESA. NMFS determined that the petition presented substantial scientific information indicating that a listing may be warranted and thus was required to conduct an ESA status review of the stock (75 FR 316; January 5, 2010) and established a Biological Review Team (BRT) for this purpose. The Status Review report produced by the BRT (Oleson et al. 2010) found that Hawaiian insular false killer whales are a Distinct Population Segment (DPS) of the global false killer whale taxon based on behavioral, ecological, genetic, and cultural factors. The BRT evaluated risk to the population, including identification and ranking of threats to the population, quantitative assessment of extinction probability using a PVA, and an assessment of the overall risk of extinction to the population. The PVA analysis indicated the probability of near-extinction (less than 20 animals) within 75 years (3 generations) was greater than 20% for all biologically plausible models and given a wide range of input variables. Of the 29 indentified threats to the population, the BRT considered the effects of small population size, including inbreeding depression and Allee effects, exposure to environmental contaminants, competition for food with commercial fisheries, and hooking, entanglement, or intentional harm by fishers to be the most substantial threats to the population. The BRT concluded that Hawaiian insular false killer whale were at high risk of extinction. The final listing decision is not yet available. False killer whales are not listed as “depleted” under the MMPA. Based on the best available scientific information (Oleson et al. 2010), Hawaiian insular false killer whales are declining, therefore the insular false killer whale stock is considered “strategic” under the 1994 amendments to the MMPA. The estimated average annual human-caused mortality and serious injury for this stock (0.60 animals per year) is greater than the PBR (0.2), providing further support for the “strategic” designation.

HAWAII PELAGIC STOCK

POPULATION SIZE

Analyses of a 2002 shipboard line-transect survey of the Hawaiian Islands EEZ (HICEAS survey) resulted in an abundance estimate of 236 (CV=1.13) false killer whales (Barlow 2006) outside of 75 nm of the main Hawaiian Islands. A recent re-analysis of the HICEAS data using improved methods and incorporating additional sighting information obtained on line-transect surveys south of the Hawaiian EEZ during 2005, resulted in a revised estimate of 484 (CV = 0.93) false killer whales within the Hawaiian Islands EEZ outside of about 75 nmi of the main Hawaiian Islands (Barlow & Rankin 2007). This abundance estimate for the pelagic stock of false killer whales is now more than 8 years old and therefore will no longer be used based on NMFS Guidelines for Assessing Marine Mammal Stocks (NMFS 2005). A new abundance survey was recently completed within the Hawaiian Islands EEZ and resulted in several acoustic and visual detections of false killer whales within the pelagic stock area. The detection process during the recent survey is different from that during the 2002 survey due to the inclusion of acoustic techniques; therefore a thorough analysis of the visual and acoustic detections will be required before a new abundance estimate will be available.

A 2005 survey (Barlow and Rankin 2007) resulted in a separate abundance estimate of 906 (CV=0.68) false killer whales in international waters south of the Hawaiian Islands EEZ and within the EEZ of Johnston Atoll, but it is unknown how many of these animals might belong to the Hawaii pelagic stock.

Minimum Population Estimate

The log-normal 20th percentile of the 2002 abundance estimate for the Hawaiian Islands EEZ outside of 75 nmi from the main Hawaiian Islands (Barlow & Rankin 2007) is 249 false killer whales. This minimum population estimate is more than 8 years old, and therefore would generally be considered outdated under NMFS Guidelines for Assessing Marine Mammal Stocks (2005) unless there was compelling evidence that the abundance has not dropped below the 2002 level within the EEZ of the Hawaiian Islands. The 2010 survey had a significantly higher encounter rate than the 2002 survey (6 on-effort sightings versus one) for approximately the same level of effort and in the same study area. Although the detection process has been improved with the inclusion of acoustic methods designed to increase the probability of detection for false killer whales, NMFS considers the significant increase in the encounter rate during the 2010 survey as evidence that the abundance in the EEZ has not dropped below the 2002 minimum estimate. Therefore, the minimum estimate will be retained at this time, particularly given that a new minimum estimate will be available following thorough analysis of data collected during the 2010 HICEAS survey.

Current Population Trend

No data are available on current population trend.
CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No data are available on current or maximum net productivity rate for this species in Hawaiian waters. Obtaining information on rates of productivity for marine mammals is difficult (Wade 1998), and no estimate is available for this stock.

POTENTIAL BIOLOGICAL REMOVAL

Following the NMFS Guidelines for Assessing Marine Mammal Stocks (NMFS 2005), the PBR is calculated only within the U.S. EEZ of the Hawaiian Islands, because estimates of human-caused mortality and serious injury are not available from all U.S. and non-U.S. sources in international waters where this stock may occur. The potential biological removal (PBR) level for the Hawaii pelagic stock of false killer whale is thus calculated as the minimum population size within the U.S. EEZ of the Hawaiian Islands (249) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.48 (for a stock of unknown status with a Hawaiian Islands EEZ mortality and serious injury rate CV between 0.30 and 0.60; Wade and Angliss 1997), resulting in a PBR of 2.4 false killer whales per year.

STATUS OF STOCK

The status of the Hawaii pelagic stock of false killer whale relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. The biomass of pelagic false killer whale prey species has likely declined over the past several decades (Oleson et al. 2010); however, the overall diet of pelagic false killer whales is not well described so it is unclear what reductions of specific species targeted by commercial fisheries may have on this stock. They are not listed as “threatened” or “endangered” under the Endangered Species Act (1973), nor as “depleted” under the MMPA. Following the NMFS Guidelines for Assessing Marine Mammal Stocks (NMFS 2005), the status of this transboundary stock of false killer whales is assessed based on the estimated abundance and estimates of mortality and serious injury within the U.S. EEZ of the Hawaiian Islands, because estimates of human-caused mortality and serious injury from all U.S. and non-U.S. sources in international waters are not available, and because the geographic range of this stock beyond the Hawaiian Islands EEZ is poorly known. Because the rate of mortality and serious injury to false killer whales within the Hawaiian Islands EEZ (10.8 animals per year) exceeds the PBR (2.4 animals per year), this stock is considered a “strategic stock” under the 1994 amendments to the MMPA. The total fishery mortality and serious injury for the Hawaii pelagic stock of false killer whales cannot be considered to be insignificant and approaching zero, because it has exceeded the PBR for more than 10 years.

The National Marine Fisheries Service recognizes that the assessment of this transboundary stock based only on abundance and human-caused mortality and serious injury within the U.S. EEZ of Hawaii introduces uncertainty, and has considered whether the status assessment would change if animals outside the Hawaiian Islands EEZ are considered. Using all available peer-reviewed information on the abundance of false killer whales on the high-seas and within the EEZ of Johnston Atoll, a PBR can be calculated as the lower 20th percentile of the Barlow and Rankin (2007) abundance estimate (530), times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.48 (for a stock of unknown status with a mortality and serious injury rate CV between 0.30 and 0.60; Wade and Angliss 1997), resulting in 5.1 false killer whales per year. This abundance estimate may be based on a smaller geographic area than the (unknown) full range of the pelagic stock, because areas to the north of the Hawaiian Islands EEZ are not included; however, the estimate meets the definition of a ‘minimum population estimate’ under the MMPA. Bycatch information for the high seas is incomplete, because the levels of false killer whale takes in non-U.S. fisheries are not known. The average annual estimated mortality and serious injury by U.S. longline vessels operating on the high seas and within the EEZ of Johnston Atoll is 10.4 (CV=0.31; McCracken 2010). This value is greater than the PBR of 5.1, and the combined U.S. and international mortality and serious injury is likely substantially higher, because fishing effort by foreign vessels may be up to six times greater than that of the US fleet (NMFS, unpublished data). Better information on the full geographic range of this stock and quantitative estimates of bycatch in international fisheries are needed to reduce the uncertainties regarding impacts of false killer whale takes on the high seas, but these uncertainties do not change the current assessment that the pelagic false killer whale stock is strategic.

PALMYRA STOCK

POPULATION SIZE

A 2005 line transect survey in the U.S. EEZ waters of Palmyra Atoll produced an estimate of 1,329 (CV = 0.65) false killer whales (Barlow & Rankin 2007). This is the best available abundance estimate for false killer whales within the Palmyra Atoll EEZ.

Minimum Population Estimate
The log-normal 20th percentile of the 2002 abundance estimate for the Palmyra Atoll EEZ (Barlow & Rankin 2007) is 806 false killer whales.

Current Population Trend
No data are available on current population trend.

Current and Maximum Net Productivity Rates
No data are available on current or maximum net productivity rate for this species in Palmyra Atoll waters. Obtaining information on rates of productivity for marine mammals is difficult (Wade 1998), and no estimate is available for this stock.

Potential Biological Removal
The potential biological removal (PBR) level for the Palmyra Atoll false killer whale stock is calculated as the minimum population size (806) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.40 (for a stock of unknown status with a mortality and serious injury rate CV >0.80; Wade and Angliss 1997), resulting in a PBR of 6.4 false killer whales per year.

Status of Stock
The status of false killer whales in Palmyra Atoll EEZ waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this stock. They are not listed as “threatened” or “endangered” under the Endangered Species Act (1973), nor as “depleted” under the MMPA. The rate of mortality and serious injury to false killer whales within the Palmyra Atoll EEZ in the Hawaii-based longline fishery (0.3 animals per year) does not exceed the PBR (6.4) for this stock and thus, this stock is not considered “strategic” under the 1994 amendments to the MMPA. The total fishery mortality and serious injury for Palmyra Atoll false killer whales is less than 10% of the PBR and, therefore, can be considered to be insignificant and approaching zero. Additional injury and mortality of false killer whales is known to occur in U.S and international longline fishing operations in international waters, and the potential effect on the Palmyra stock is unknown.

References

NMFS, Pacific Islands Region, Observer Program, 1602 Kapiolani Blvd, Suite 1110, Honolulu, HI 96814.

NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92027.

