LONGMAN’S BEAKED WHALE (*Indopacetus pacificus*): Hawaii Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Longman’s beaked whale is considered one of the least known cetacean species (Jefferson *et al.* 1993; Rice 1998; Dalebout *et al.* 2003). Until recently, it was known only from two skulls found in Australia and Somalia (Longman 1926; Azzaroli 1968). Recent genetic studies (Dalebout *et al.* 2003) have revealed that sightings of ‘tropical bottlenose whales’ (*Hyperoodon* sp.; Pitman *et al.* 1999) in the Indo-Pacific region were in fact Longman’s beaked whales, providing the first description of the external appearance of this species. Although originally described as *Mesoplodon pacificus* (Longman 1926), it has been proposed that this species is sufficiently unique to be placed within its own genus, *Indopacetus* (Moore 1968; Dalebout *et al.* 2003).

The distribution of Longman’s beaked whale, as determined from stranded specimens and sighting records of ‘tropical bottlenose whales’, includes tropical waters from the eastern Pacific westward through the Indian Ocean to the eastern coast of Africa. A single stranding of Longman’s beaked whale has been reported in Hawaii, in 2010 near Hana, Maui (West *et al.* 2012), and there was a single sighting off Kona over 13 years of nearshore surveys off the leeward waters of the main Hawaiian Islands (Baird *et al.* 2013). Summer/fall shipboard surveys of the waters within the U.S. Exclusive Economic Zone (EEZ) of the Hawaiian Islands, resulted in one sighting in 2002 and three in 2010 (Barlow 2006, Bradford *et al.* 2017; Figure 1).

For the Marine Mammal Protection Act (MMPA) stock assessment reports, there is one Pacific stock of Longman’s beaked whales, found within waters of the Hawaiian Islands EEZ. This stock includes animals found both within the Hawaiian Islands EEZ and in adjacent high seas waters; however, because data on abundance, distribution, and human-caused impacts are largely lacking for high seas waters, the status of this stock is evaluated based on data from U.S. EEZ waters of the Hawaiian Islands (NMFS 2005).

POPULATION SIZE

Encounter data from a 2010 shipboard line-transect survey of the entire Hawaiian Islands EEZ was recently evaluated using Beaufort sea-state-specific trackline detection probabilities for Longman’s beaked whales, resulting in an abundance estimate of 7,619 (CV = 0.66) Longman’s beaked whales (Bradford *et al.* 2017) in the Hawaii stock. A 2002 shipboard line-transect survey of the same area resulted in an abundance estimate of 1,007 (CV = 1.25) Longman’s beaked whales (Barlow 2006). Species abundances estimated from the 2002 HICEAS survey used pooled small dolphin, large dolphin, and large whale g(0) (the probability of sighting and recording an animal directly on the track line) estimates stratified by group size (Barlow 1995). Since then, Barlow (2015) developed a more robust method for estimating species-specific g(0) values that are adjusted for the Beaufort sea states that are encountered during a survey. This new method was used for analyzing the data from the 2010 survey, but has not yet been used to analyze the 2002 data.
Minimum Population Estimate

The minimum population size is calculated as the lower 20th percentile of the log-normal distribution (Barlow et al. 1995) around the 2010 abundance estimate, or 4,592 Longman’s beaked whales within the Hawaiian Islands EEZ.

Current Population Trend

Abundance analyses of the 2002 and 2010 datasets used different g(0) values. The 2002 survey data have not been reanalyzed using this method. This change precludes evaluation of population trends at this time. Assessment of population trend will likely require additional survey data and reanalysis of all datasets using comparable methods.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No data are available on current or maximum net productivity rate for Longman’s beaked whales.

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size within the U.S. EEZ of the Hawaiian Islands (4,592) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.50 (for a stock of unknown status with no known fishery mortality or serious injury within the Hawaiian Islands EEZ; Wade and Angliss 1997), resulting in a PBR of 46 Longman’s beaked whales per year.

HUMAN CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Information on fishery-related mortality and serious injury of cetaceans in Hawaiian waters is limited, but the gear types used in Hawaiian fisheries are responsible for marine mammal mortality and serious injury in other fisheries throughout U.S. waters. No interactions between nearshore fisheries and Longman’s beaked whales have been reported in Hawaiian waters. No estimates of human-caused mortality or serious injury are currently available for nearshore hook and line fisheries because these fisheries are not observed or monitored for protected species bycatch. There are currently two distinct longline fisheries based in Hawaii: a deep-set longline (DSLL) fishery that targets primarily tunas, and a shallow-set longline fishery (SSLL) that targets swordfish. Both fisheries operate within U.S. waters and on the high seas. Between 2011 and 0215, no Longman’s beaked whales were observed hooked or entangled in the SSLL fishery (100% observer coverage) or the DSLL fishery (20-22% observer coverage) (Bradford 2017, Bradford and Forney 2017, McCracken 2017). However, four unidentified cetaceans, which may have been a Longman’s beaked whale, were taken in the DSLL fishery, and one unidentified cetaceans, one unidentified Mesoplodon, and two unidentified beaked whale, which may have been Longman’s beaked whales were taken in the SSLL fishery.

Other Mortality

Anthropogenic sound sources, such as military sonar and seismic testing have been implicated in the mass strandings of beaked whales, including atypical events involving multiple beaked whale species (Simmonds and Lopez-Jurado 1991, Frantiz 1998, Anon. 2001, Jepson et al., 2003, Cox et al. 2006). While D’Amico et al. (2009) note that most mass strandings of beaked whales are unassociated with documented sonar activities, lethal or sublethal effects of such activities would rarely be documented, due to the remote nature of such activities and the low probability that an injured or dead beaked whale would strand. Filadelpho et al. (2009) reported statistically significant correlations between military sonar use and mass strandings of beaked whales in the Mediterranean and Caribbean Seas, but not in Japanese and Southern California waters, and hypothesized that regions with steep bathymetry adjacent to coastlines are more conducive to stranding events in the presence of sonar use. In Hawaiian waters, Faerber & Baird (2010) suggest that the probability of stranding is lower than in some other regions due to nearshore currents carrying animals away from beaches, and that stranded animals are less likely to be detected due to low human population density near many of Hawaii’s beaches. Actual and simulated sonar are known to interrupt the foraging dives and echolocation activities of tagged beaked whales (Tyack et al., 2011, DeRuiter et al., 2013). Cuvier’s beaked whales tagged and tracked during simulated mid-frequency sonar exposure showed avoidance reactions, including prolonged diving, cessation of echolocation click production associated with foraging, and directional travel away from the simulated sonar source (DeRuiter et al., 2013). Blainville’s beaked whale presence
was monitored on hydrophone arrays before, during, and after sonar activities on a Caribbean military range, with evidence of avoidance behavior: whales were detected throughout the range prior to sonar exposure, not detected in the center of the range coincident with highest sonar use, and gradually returned to the range center after the cessation of sonar activity (Tyack et al. 2011). Fernández et al. (2013) report that there have been no mass strandings of beaked whales in the Canary Islands following a 2004 ban on sonar activities in that region. The absence of beaked whale bycatch in California drift gillnets following the introduction of acoustic pingers into the fishery implies additional sensitivity of beaked whales to anthropogenic sound (Carretta et al. 2008, Carretta and Barlow 2011). No estimates of potential mortality or serious injury are available for U.S. waters.

STATUS OF STOCK

The Hawaii stock of Longman’s beaked whales is not considered strategic under the 1994 amendments to the MMPA. The status of Longman's beaked whales in Hawaiian waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. Longmans’ beaked whales are not listed as “threatened” or “endangered” under the Endangered Species Act (1973), nor designated as “depleted” under the MMPA. Given the absence of recent recorded fishery-related mortality or serious injuries, the total fishery mortality and serious injury can be considered to be insignificant and approaching zero. The impacts of anthropogenic sound on beaked whales remain a concern (Barlow and Gisiner 2006, Cox et al. 2006, Hildebrand et al. 2005, Weilgart 2007). The first confirmed case of morbillivirus in a Hawaiian cetacean was found in a subadult Longman’s beaked whale stranded on Maui in 2010 (West et al. 2012). The presence of morbillivirus in all 3 known species of beaked whales in Hawaiian waters (Jacob et al. 2016), raises concerns about the history and prevalence of this disease in Hawaii and the potential population impacts, including cumulative impacts of disease with other stressors.

REFERENCES


