NOTE – December 2015: In areas outside of Alaska, studies of harbor porpoise distribution have indicated that stock structure is likely more fine-scaled than is reflected in the Alaska Stock Assessment Reports. At this time, no data are available to define stock structure for harbor porpoise on a finer scale in Alaska. However, based on comparisons with other regions, it is likely that several regional and sub-regional populations exist. Should new information on harbor porpoise stocks become available, the harbor porpoise Stock Assessment Reports will be updated.

STOCK DEFINITION AND GEOGRAPHIC RANGE

In the eastern North Pacific Ocean, the harbor porpoise ranges from Point Barrow and offshore areas of the Chukchi Sea, along the Alaska coast, and down the west coast of North America to Point Conception, California (Gaskin 1984, Christman and Aerts 2015). Harbor porpoise primarily frequent the coastal waters of the Gulf of Alaska and Southeast Alaska (Dahlheim et al. 2000, 2009), typically occurring in waters less than 100 m deep; however, occasionally they occur in deeper waters (Hobbs and Waite 2010). The average density of harbor porpoise in Alaska appears to be less than that reported off the west coast of the continental U.S., although areas of high densities do occur in Glacier Bay and the adjacent waters of Icy Strait, Yakutat Bay, the Copper River Delta, Sitkalidak Strait (Dahlheim et al. 2000, 2009, 2015; Hobbs and Waite 2010), and lower Cook Inlet (Shelden et al. 2014).

Stock discreteness in the eastern North Pacific was analyzed using mitochondrial DNA from samples collected along the west coast (Rosel 1992), including one sample from Alaska. Two distinct mitochondrial DNA groupings or clades were found. One clade is present in California, Washington, British Columbia, and the single sample from Alaska (no samples were available from Oregon), while the other is found only in California and Washington. Although these two clades are not geographically distinct by latitude, the results may indicate a low mixing rate for harbor porpoise along the west coast of North America. Investigation of pollutant loads in harbor porpoise ranging from California to the Canadian border also suggests restricted harbor porpoise movements (Calambokidis and Barlow 1991); these results are reinforced by a similar study in the northwest Atlantic (Westgate and Tolley 1999). Further genetic testing of the same samples mentioned above, along with a few additional samples including eight more from Alaska, found differences between some of the four areas investigated, California, Washington, British Columbia, and Alaska, but inference was limited by small sample size (Rosel et al. 1995). Those results demonstrate that harbor porpoise along the west coast of North America are not panmictic and that movement is sufficiently restricted to result in genetic differences. This is consistent with low movement suggested by genetic analysis of harbor porpoise specimens from the North Atlantic (Rosel et al. 1999). Numerous stocks have been delineated with clinal differences over areas as small as the waters surrounding the British Isles (Walton 1997). In a molecular genetic analysis of small-scale population structure of eastern North Pacific harbor porpoise, Chivers et al. (2002) included 30 samples from Alaska, 16 of which were from the Copper River Delta, 5 from Barrow, 5 from Southeast Alaska, and 1 sample each from St. Paul, Adak, Kodiak, and Kenai. Unfortunately, no conclusions could be drawn about the genetic structure of harbor porpoise within Alaska because of the insufficient number of samples from each region. Accordingly, harbor porpoise stock structure in Alaska is defined by geographic areas at this time.

Although it is difficult to determine the true stock structure of harbor porpoise populations in the northeast Pacific, from a management standpoint it would be prudent to assume that regional populations exist and that they
should be managed independently (Rosel et al. 1995, Taylor et al. 1996). Accordingly, from the above information, three harbor porpoise stocks in Alaska were specified, recognizing that the boundaries of these three stocks were inferred primarily based upon geography or perceived areas of low porpoise density: 1) the Southeast Alaska stock - occurring from Dixon Entrance to Cape Suckling, Alaska, 2) the Gulf of Alaska stock - occurring from Cape Suckling to Unimak Pass, and 3) the Bering Sea stock - occurring throughout the Aleutian Islands and all waters north of Unimak Pass (Fig. 1). To date, there have been no analyses to assess the validity of these stock designations or to assess possible substructure within these stocks.

Harbor porpoise have been sighted during seismic surveys of the Chukchi Sea conducted in the nearshore and offshore waters by the oil and gas industry between July and November from 2006 to 2010 (Funk et al. 2010, 2011; Aerts et al. 2011; Reiser et al. 2011). Harbor porpoise were the third most frequently sighted cetacean species in the Chukchi Sea, after gray and bowhead whales, with most sightings occurring during the September-October monitoring period (Funk et al. 2011, Reiser et al. 2011). Over the 2006-2010 industry-sponsored monitoring period, six sightings of 11 harbor porpoise were reported in the Beaufort Sea, suggesting harbor porpoise regularly occur in both the Chukchi and Beaufort seas (Funk et al. 2011).

POPULATION SIZE

In June and July of 1999, an aerial survey covered the waters of Bristol Bay. Two types of corrections were needed for these aerial surveys: one for observer perception bias to correct for animals not counted because they were not observed and one to correct for porpoise availability/visibility at the surface. The 1999 survey resulted in an observed abundance estimate for the Bering Sea harbor porpoise stock of 16,289 (CV = 0.132; Hobbs and Waite 2010), which includes the perception bias correction factor (1.337; CV = 0.062) obtained during the survey using an independent belly window observer. Laake et al. (1997) estimated the availability bias for aerial surveys of harbor porpoise in Puget Sound to be 2.96 (CV = 0.180); the use of this correction factor is preferred to other published correction factors (e.g., Barlow et al. 1988, Calambokidis et al. 1993) because it is an empirical estimate of availability bias. However the Laake et al. (1997) correction results from a different area and should be replaced with a correction derived from data collected in Alaska. Applying the Laake et al. (1997) correction factor, the corrected abundance estimate is 48,215 porpoise (16,289 × 2.96 = 48,215; CV = 0.223). The estimate for 1999 can be considered conservative for that time period, as the surveyed areas did not include known harbor porpoise range along the Aleutian Island chain, near the Pribilof Islands, or in the waters north of Cape Newenham (approximately 59°N).

Shipboard visual line-transect surveys for cetaceans were conducted on the eastern Bering Sea shelf in association with pollock stock assessment surveys in June and July of 1999, 2000, 2002, 2004, 2008, and 2010 (Moore et al. 2002; Friday et al. 2012, 2013). The entire range of the survey was completed in three of those years (2002, 2008, and 2010) and harbor porpoise abundance estimates were calculated for each of these surveys (Friday et al. 2013); however, correction factors were not applied for perception bias, availability bias, or responsive movement to the ship. The abundance estimate was 1,971 (CV = 0.46) for 2002, 4,056 (CV = 0.40) for 2008, and 833 (CV = 0.66) for 2010. Although the 2010 estimate is the lowest of the three years, it is not significantly different from the 2002 and 2008 estimates (Friday et al. 2013). These surveys are useful for showing distribution throughout the southeastern Bering Sea and the relationship to hydrographic domains; however, because the surveys were not designed for harbor porpoise and no correction factors are available, the abundance estimates are not used to calculate a population estimate.

Minimum Population Estimate

The minimum population estimate (N\text{MIN}) for this stock is calculated using Equation 1 from the potential biological removal (PBR) guidelines (Wade and Angliss 1997): N\text{MIN} = N/exp(0.842×[\ln(1+[CV(N)]^2)]^{0.5}). Using the 1999 partial population estimation (N) of 48,215 and its associated coefficient of variation (CV) of 0.223, N\text{MIN} for the Bering Sea stock of harbor porpoise is 40,039 (Hobbs and Waite 2010). However, because the survey data are more than 8 years old, N\text{MIN} is considered unknown.

Current Population Trend

There is no reliable information on trends in abundance for the Bering Sea stock of harbor porpoise.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

A reliable estimate of the maximum net productivity rate (R\text{MAX}) is not available for this stock of harbor porpoise. Hence, until additional data become available, the cetacean maximum theoretical net productivity rate of 4% will be used (Wade and Angliss 1997).
POTENTIAL BIOLOGICAL REMOVAL

PBR is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: \(\text{PBR} = N_{\text{MIN}} \times 0.5R_{\text{MAX}} \times F_R \). The recovery factor \((F_R)\) for this stock is 0.5, the value for cetacean stocks with unknown population status (Wade and Angliss 1997). However, the 2016 guidelines for preparing Stock Assessment Reports (NMFS 2016) state that abundance estimates older than 8 years should not be used to calculate PBR due to a decline in confidence in the reliability of an aged abundance estimate. Therefore, the PBR for this stock is considered undetermined.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Detailed information for each human-caused mortality, serious injury, and non-serious injury reported for NMFS-managed Alaska marine mammals in 2011-2015 is listed, by marine mammal stock, in Helker et al. (2017); however, only the mortality and serious injury data are included in the Stock Assessment Reports. The total estimated annual level of human-caused mortality and serious injury for Bering Sea harbor porpoise in 2011-2015 is 0.4 porpoise: 0.2 in U.S. commercial fisheries and 0.2 in subsistence fisheries; however, this estimate is considered a minimum because most of the fisheries likely to interact with this stock of harbor porpoise have never been monitored. Potential threats most likely to result in direct human-caused mortality or serious injury of this stock include entanglement in fishing gear.

Fisheries Information

Detailed information on U.S. commercial fisheries in Alaska waters (including observer programs, observer coverage, and observed incidental takes of marine mammals) is presented in Appendices 3-6 of the Alaska Stock Assessment Reports.

No mortality or serious injury of Bering Sea harbor porpoise was observed incidental to U.S. federal commercial fisheries during 2011-2015 (Breiwick 2013; MML, unpubl. data). However, strandings of marine mammals with fishing gear attached or with injuries caused by interactions with fishing gear provide some mortality data. One harbor porpoise mortality due to entanglement in a commercial salmon set gillnet in Kotzebue, Alaska, was reported to the NMFS Alaska Region stranding network in 2013 (Table 1; Helker et al. 2017), resulting in a minimum average annual mortality and serious injury rate of 0.2 Bering Sea harbor porpoise in U.S. commercial fisheries in 2011-2015 (Table 1). This mortality and serious injury estimate results from an actual count of verified human-caused deaths and serious injuries and should be considered a minimum because not all entangled animals strand and not all stranded animals are found, reported, or have the cause of death determined. A complete estimate of the total mortality and serious injury rate incidental to U.S. commercial fisheries is unavailable for this stock because of the absence of observer placements in all of the salmon and herring fisheries operating within the range of this stock.

In 2012, one harbor porpoise entangled in a subsistence salmon gillnet in Nome, Alaska (Helker et al. 2017), resulting in a minimum average annual mortality and serious injury rate of 0.2 harbor porpoise due to subsistence fishery interactions in 2011-2015 (Table 1).

Table 1. Summary of incidental mortality and serious injury of Bering Sea harbor porpoise, by year and type, reported to the NMFS Alaska Region marine mammal stranding network in 2011-2015 (Helker et al. 2017). Only cases of serious injury were recorded in this table; animals with non-serious injuries have been excluded.

<table>
<thead>
<tr>
<th>Cause of injury</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>Mean annual mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entangled in Kotzebue commercial salmon set gillnet</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Entangled in Nome subsistence salmon gillnet</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Total in commercial fisheries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Total in subsistence fisheries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
</tbody>
</table>

Alaska Native Subsistence/Harvest Information

Subsistence hunters in Alaska have not been reported to hunt from this stock of harbor porpoise; however, when porpoise are caught incidental to subsistence or commercial fisheries, subsistence hunters may claim the carcass for subsistence use (R. Suydam, North Slope Borough, pers. comm.).
STATUS OF STOCK

Harbor porpoise are not designated as depleted under the Marine Mammal Protection Act or listed as threatened or endangered under the Endangered Species Act. The abundance estimate for this stock is unknown because the existing estimate is more than 8 years old and so the PBR level is considered undetermined. Because the PBR is undetermined and most of the fisheries likely to interact with this stock have never been observed, it is unknown if the minimum estimate of the mean annual mortality and serious injury rate (0.2 porpoise from stranding data) in U.S. commercial fisheries can be considered insignificant and approaching zero mortality and serious injury rate. NMFS considers this stock strategic because the level of mortality and serious injury would likely exceed the PBR level for this stock if we had a newer abundance estimate and complete observer coverage. Population trends and status of this stock relative to its Optimum Sustainable Population are unknown.

There are key uncertainties in the assessment of the Bering Sea stock of harbor porpoise. This stock likely comprises multiple, smaller stocks based on analogy with harbor porpoise populations that have been the focus of specific studies on stock structure. The most recent surveys were more than 8 years ago and, given the lack of information on population trend, the abundance estimates are not used to calculate an N_{MIN} and the PBR level is undetermined. Several commercial fisheries overlap with the range of this stock and most have never been observed; thus, the estimate of commercial fishery mortality and serious injury is expected to be a minimum estimate. Coastal subsistence fisheries will occasionally cause incidental mortality or serious injury of a harbor porpoise; tracking these subsistence takes is challenging because there is no reporting mechanism.

HABITAT CONCERNS

Harbor porpoise are found over the shelf waters of the southeastern Bering Sea (Dahlheim et al. 2000, Hobbs and Waite 2010). In the nearshore waters of this region, harbor porpoise are vulnerable to physical modifications of nearshore habitats resulting from urban and industrial development (including waste management and nonpoint source runoff) and activities such as construction of docks and other over-water structures, filling of shallow areas, dredging, and noise (Limenschmidt et al. 2013). Climate change and changes to sea-ice coverage may be opening up new habitats, or resulting in shifts in habitat, as evident by an increase in the number of reported sightings of harbor porpoise in the Chukchi Sea (Funk et al. 2010, 2011). Shipping and noise from oil and gas activities may also be a habitat concern for harbor porpoise, particularly in the Chukchi Sea.

CITATIONS

