ATLANTIC WHITE-SIDED DOLPHIN (*Lagenorhynchus acutus*):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

White-sided dolphins are found in temperate and sub-polar waters of the North Atlantic, primarily in continental shelf waters to the 100-m depth contour. In the western North Atlantic the species inhabits waters from multiple marine ecoregions (Spalding 2007) within the region from central West Greenland to North Carolina (about 35˚N) and perhaps as far east as 29˚W in the vicinity of the mid-Atlantic Ridge (Evans 1987; Hamazaki 2002; Doksaeter *et al.* 2008; Waring *et al.* 2008). Distribution of sightings, strandings and incidental takes suggest the possible existence of three population units: Gulf of Maine, Gulf of St. Lawrence and Labrador Sea populations (Palka *et al.* 1997). Evidence for a separation between the population in the southern Gulf of Maine and the Gulf of St. Lawrence population comes from the reduced density of summer sightings along the Atlantic side of Nova Scotia. This was reported in Gaskin (1992), is evident in Smithsonian stranding records and in Canadian/west Greenland bycatch data (Stenson *et al.* 2011), and was obvious during summer abundance surveys that covered waters from Virginia to the Gulf of St. Lawrence and during the Canadian component of the Trans-North Atlantic Sighting Survey in the summer of 2007 (Lawson and Gosselin 2009, 2011). White-sided dolphins were seen frequently in Gulf of Maine waters and in waters at the mouth of the Gulf of St. Lawrence, but only a relatively few sightings were recorded between these two regions. This gap has been less obvious since 2007 and could be related to an increasing number of animals being distributed more northwards due to climatic/ecosystem changes that are occurring in the Gulf of Maine. No comparative genetic analysis of samples from U.S. waters and the Gulf of St. Lawrence and/or Newfoundland have been made.

The Gulf of Maine population of white-sided dolphins is most common in continental shelf waters from Hudson Canyon (approximately 39˚N) to Georges Bank, and in the Gulf of Maine and lower Bay of Fundy. Sighting data indicate seasonal shifts in distribution (Northridge *et al.* 1997). During January to May, low numbers of white-sided dolphins are found from Georges Bank to Jeffreys Ledge (off New Hampshire), with even lower numbers south of Georges Bank, as documented by a few strandings collected on beaches of Virginia to South Carolina. From June through September, large numbers of white-sided dolphins are found from Georges Bank to the lower Bay of Fundy. From October to December, white-sided dolphins occur at intermediate densities from southern Georges Bank to southern Gulf of Maine (Payne and Heinemann 1990). Sightings south of Georges Bank, particularly around Hudson Canyon, occur year round but at low densities. The Virginia and North Carolina observations appear to represent the

southern extent of the species’ range during the winter months. On 4 May 2008 a stranded 17-year old male white-sided dolphin with severe pulmonary distress and reactive lymphadenopathy stranded in South Carolina (Powell et al. 2012). In the absence of additional strandings or sightings, this stranding seems to be an out-of-range anomaly. The seasonal spatial distribution of this species appears to be changing during the last few years. There is evidence for an earlier distributional shift during the 1970s, from primarily offshore waters into the Gulf of Maine, hypothesized to be related to shifts in abundance of pelagic fish stocks resulting from depletion of herring by foreign distant-water fleets (Kenney et al. 1996).

Stomach-content analysis of both stranded and incidentally caught white-sided dolphins in U.S. waters determined that the predominant prey were silver hake (Merluccius bilinearis), spoonarm octopus (Bathypolypus hairdii) and haddock (Melanogrammus aeglefinus). Sand lances (Ammodytes spp.) were only found in the stomach of one stranded white-sided dolphin. Seasonal variation in diet was indicated; pelagic Atlantic herring (Clupea harengus) was the most important prey in summer, but was rare in winter (Craddock et al. 2009).

Within the Gulf of Maine population a genetic analysis comparing samples from Maine to samples from Massachusetts found no significant differentiation (Banguera-Hinestroza et al. 2014). Abrahams (2014) compared samples collected between Connecticut and Maine to those collected between New York and North Carolina and found no evidence for genetic differentiation between these two regions. Sample sizes in these studies in some cases were low, and the potential for seasonal movement, as suggested by Northridge et al. (1997), has the potential to confound these studies if season was not considered in the sampling scheme.

As a consequence of these distribution patterns and genetic analyses, this report assumes white-sided dolphins in U.S. waters are distributed from the Gulf of Maine population, which is separate from the neighboring Gulf of St. Lawrence population. In summary, the Western North Atlantic stock of white-sided dolphins may contain multiple demographically-independent populations, where the animals in U.S. waters are part of the Gulf of Maine population. However, further research is necessary to support this hypothesis and eliminate the uncertainties.

POPULATION SIZE

The best available current abundance estimate for white-sided dolphins in the western North Atlantic stock is 48,819 (CV= 0.61), resulting from a June–August 2011 survey. However, this estimate actually only covers the Gulf of Maine population, not the entire western North Atlantic stock. A current abundance survey that accounts for availability bias and covers at least the Atlantic U.S. and Canadian waters is needed to estimate the abundance of the entire, or at least most of, the western North Atlantic stock. Additionally, since the most current estimate dates from a survey done in 2011, the ability for that estimate to accurately represent the present population size has become increasingly uncertain.

Earlier abundance estimates

Please see Appendix IV for earlier abundance estimates. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable to determine the current PBR.

Recent surveys and abundance estimates

An abundance estimate of 48,819 (CV=0.61) white-sided dolphins was generated from a shipboard and aerial survey conducted during June–August 2011 (Palka 2012). The aerial portion that contributed to the abundance estimate covered 5,313 km of tracklines that were over waters north of New Jersey from the coastline to the 100-m depth contour through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portion covered 3,107 km of tracklines that were in waters offshore of central Virginia to Massachusetts (waters that were deeper than the 100-m depth contour out to beyond the U.S. EEZ). Both sighting platforms used a double-platform data-collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers, 2004). Estimation of the abundance was based on the independent-observer approach assuming point independence (Laake and Borchers 2004) and calculated using the MRDS option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

No white-sided dolphins were detected in the aerial and ship abundance surveys that were conducted concurrently (June-August 2011) in waters between central Virginia and central Florida. This shipboard survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed the double-platform methodology searching with 25x150 “bigeye” binoculars. A total of 4,445 km of tracklines was surveyed, yielding 290 cetacean sightings.
Table 1. Summary of recent abundance estimates for western North Atlantic stock of white-sided dolphins (*Lagenorhynchus acutus*), by month, year, and area covered during each abundance survey, and resulting abundance estimate (N_{best}) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N<sub>best</sub></th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Aug 2011</td>
<td>Central Virginia to lower Bay of Fundy</td>
<td>48,819</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by (Wade and Angliss 1997). The best estimate of abundance for the western North Atlantic stock of white-sided dolphins is 48,819 (CV=0.61). The minimum population estimate for these white-sided dolphins is 30,403.

Current Population Trend

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV > 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor *et al.* 2007).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity include: calving interval is 2-3 years; lactation period is 18 months; gestation period is 10–12 months and births occur from May to early August, mainly in June and July; length at birth is 110 cm; length at sexual maturity is 230–240 cm for males, and 201–222 cm for females; age at sexual maturity is 8–9 years for males and 6–8 years for females; mean adult length is 250 cm for males and 224 cm for females (Evans 1987); and maximum reported age for males is 22 years and for females, 27 years (Sergeant *et al.* 1980).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995). Key uncertainties about the maximum net productivity rate are due to the limited understanding of stock-specific life history parameters; thus the default value was used.

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 30,403. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor is 0.5, the default value for stocks of unknown status relative to OSP, and the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic stock of white-sided dolphin is 304.

ANNUAL HUMAN- CAUSED MORTALITY AND SERIOUS INJURY

Total annual estimated average fishery-related mortality or serious injury to this stock during 2011–2015 was 56 (CV=0.15) white-sided dolphins (Table 2).

Key uncertainties include the potential that the observer coverage in the Mid-Atlantic gillnet was not representative of the fishery during all times and places, since the observer coverage was relatively low (0.02 – 0.06). The effect of this is unknown.

There are no major known sources of unquantifiable human-caused mortality or serious injury for the Gulf of Maine population. When considering the entire western North Atlantic stock, mortality in Canadian Atlantic waters is largely unquantified.

Fishery Information

Detailed fishery information is reported in Appendix III.
Earlier Interactions
See Appendix V for more information on historical takes.

U.S.

Northeast Sink Gillnet
Annual white-sided dolphin mortalities were estimated using annual stratified ratio-estimator methods (Table 2; Orphanides 2013; Hatch and Orphanides 2014, 2015, 2016, Orphanides and Hatch 2017). See Table 2 for bycatch estimates and observed mortality and serious injury for the current 5-year period, and Appendix V for long-term bycatch information.

Northeast Bottom Trawl
Fishery-related bycatch rates were estimated using an annual stratified ratio-estimator (Lyssikatos 2015; Chavez-Rosales et al. 2017). See Table 2 for bycatch estimates and observed mortality and serious injury for the current 5-year period, and Appendix V for long-term bycatch information.

Mid-Atlantic Bottom Trawl
Fishery-related bycatch rates were estimated using an annual stratified ratio-estimator (Lyssikatos 2015; Chavez-Rosales et al. 2017). See Table 2 for bycatch estimates and observed mortality and serious injury for the current 5-year period, and Appendix V for long-term bycatch information.

Table 2. Summary of the incidental mortality of North Atlantic stock of white-sided dolphins (*Lagenorhynchus acutus*) by commercial fishery including the years sampled, the type of data used, the annual observer coverage, the serious injuries and mortalities recorded by on-board observers, the estimated annual serious injury and mortality, the estimated CV of the combined annual mortality and the mean annual mortality (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observe Serious Injury</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Combined Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink Gillnet</td>
<td>11-15</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.19, .15,.11,.18,.14</td>
<td>0, 0, 0, 0, 0</td>
<td>5, 1, 1, 2, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>18, 9, 4, 10, 0</td>
<td>18, 9, 4, 10, 0</td>
<td>.43, .92, 1.03, .66, 0</td>
</tr>
<tr>
<td>Northeast Bottom Trawl</td>
<td>11-15</td>
<td>Obs. Data Trip Logbook</td>
<td>.26, .07,.15,.17,.19</td>
<td>0, 0, 0, 0, 0</td>
<td>47, 9, 8, 3, 3</td>
<td>3, 0, 0, 0, 0</td>
<td>138, 27, 33, 16, 15</td>
<td>140, 27, 33, 16, 15</td>
<td>.24, .47, .31, .5, .52</td>
</tr>
<tr>
<td>Mid-Atlantic Bottom Trawl</td>
<td>11-15</td>
<td>Obs. Data Trip Logbook</td>
<td>.08, .05,.06,.08,.09</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 9.67, 0</td>
<td>0, 0, 0, 9.67, 0</td>
<td>0, 0, 0, 9.4, 0</td>
<td>1.9 (0.94)</td>
</tr>
</tbody>
</table>

Total | 56 (0.15) |
a Observer data (Obs. Data), used to measure bycatch rates, are collected within the Northeast Observer Program and At-sea Monitoring Program. NEFSC collects landings data (unallocated Dealer Data or Allocated Dealer Data) which are used as a measure of total landings and mandatory Vessel Trip Reports (VTR) (Trip Logbook) are used to determine the spatial distribution of landings and fishing effort in the sink gillnet, bottom trawl and mid-water trawl fisheries. In addition, the Trip Logbooks are the primary source of the measure of total effort (tow duration) in the mid-water and bottom trawl fisheries.

b Observer coverage is defined as the ratio of observed to total metric tons of fish landed for the gillnet fisheries, and the ratio of observed to total trips for bottom trawl and Mid-Atlantic mid-water trawl (including pair trawl) fisheries. Total observer coverage reported for bottom trawl and gillnet gear includes samples collected from the at-sea monitoring program in addition to traditional observer coverage through the Northeast Fisheries Observer Program (NEFOP).

c Serious injuries were evaluated for the 2011–2015 period and include both at-sea monitor and traditional observer data (Josephson et al. 2017).

CANADA
There is little information available that quantifies fishery interactions involving white-sided dolphins in Canadian waters. Two white-sided dolphins were reported caught in groundfish gillnet sets in the Bay of Fundy during 1985 to 1989, and 9 were reported taken in West Greenland between 1964 and 1966 in the now non-operational salmon drift nets (Gaskin 1992). Several (number not specified) were also taken during the 1960s in the now non-operational Newfoundland and Labrador groundfish gillnets. A few (number not specified) were taken in an experimental drift gillnet fishery for salmon off West Greenland which took place from 1965 to 1982 (Read 1994).

Hooker et al. (1997) summarized bycatch data from a Canadian fisheries observer program that placed observers on all foreign fishing vessels operating in Canadian waters, on 25-40% of large Canadian fishing vessels (greater than 100 feet long), and on approximately 5% of smaller Canadian fishing vessels. Bycaught marine mammals were noted as weight in kilos rather than by the numbers of animals caught. Thus the number of individuals was estimated by dividing the total weight per species per trip by the maximum recorded weight of each species. During 1991 through 1996, an estimated 6 white-sided dolphins were observed taken. One animal was from a longline trip south of the Grand Banks (43° 10′N 53° 08′W) in November 1996 and the other 5 were taken in the bottom trawl fishery off Nova Scotia in the Atlantic Ocean; 1 in July 1991, 1 in April 1992, 1 in May 1992, 1 in April 1993, 1 in June 1993 and 0 in 1994 to 1996.

Estimation of small cetacean bycatch for Newfoundland fisheries using data collected during 2001 to 2003 (Benjamins et al. 2007) indicated that, while most of the estimated 862 to 2,228 animals caught were harbor porpoises, a few were white-sided dolphins caught in the Newfoundland nearshore gillnet fishery and offshore monkfish/skate gillnet fisheries.

Herring Weirs
Previously only one white-sided dolphin was released alive and unharmed from a herring weir in the Bay of Fundy (A. Westgate, pers. comm.). Due to the formation of a cooperative program between Canadian fishermen and biologists, it is expected that most dolphins and whales will be able to be released alive. Fishery information is available in Appendix III.

Other Mortality
U.S.
Recent Atlantic white-sided dolphin strandings on the U.S. Atlantic coast are documented in Table 3 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 13 September 2016). Eight of these animals were released alive. Human interaction was indicated in three records during this period. None of these were classified as fishery interactions.

Mass strandings involving up to a hundred or more animals at one time are common for this species. The causes of these strandings are not known. Because such strandings have been known since antiquity, it could be presumed that recent strandings are a normal condition (Gaskin 1992). It is unknown whether human
causes, such as fishery interactions and pollution, have increased the number of strandings. In an analysis of mortality causes of stranded marine mammals on Cape Cod and southeastern Massachusetts between 2000 and 2006, Bogomolni et al. (2010) found 69% (46 of 67) of stranded white-sided dolphins were involved in mass-stranding events with no significant cause determined, and 21% (14 of 67) were classified as disease-related.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

CANADA

Small numbers of white-sided dolphins have been hunted off southwestern Greenland. (Reeves et al. 1999). The Nova Scotia Stranding Network documented whales and dolphins stranded on the coast of Nova Scotia during 1991 to 1996 (Hooker et al. 1997). Researchers with Dept. of Fisheries and Oceans, Canada documented strandings on the beaches of Sable Island during 1970 to 1998 (Lucas and Hooker 2000). More recently whales and dolphins stranded on the coast of Nova Scotia have been recorded by the Marine Animal Response Society and the Nova Scotia Stranding Network (Table 3; Marine Animal Response Society, pers. comm.). In addition, stranded white-sided dolphins in Newfoundland and Labrador are being recorded by the Whale Release and Strandings Program (Table 3; Ledwell and Huntington 2010, 2011, 2012a, 2012b, 2013, 2014, 2015).

Table 3. White-sided dolphin (Lagenorhynchus acutus) reported strandings along the U.S. and Canadian Atlantic coast, 2010-2014.

<table>
<thead>
<tr>
<th>Area</th>
<th>Year</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>New Hampshire</td>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>ab</td>
<td>42</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>62</td>
</tr>
<tr>
<td>Rhode Island</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>New York</td>
<td></td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>New Jersey</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Delaware</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>North Carolina</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
TOTAL US

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>10</th>
<th>14</th>
<th>6</th>
<th>4</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nova Scotia</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>11</td>
<td>41</td>
</tr>
<tr>
<td>Newfoundland and Labrador</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>56</td>
<td>18</td>
<td>21</td>
<td>23</td>
<td>15</td>
<td>133</td>
</tr>
</tbody>
</table>

* Records of mass strandings in Massachusetts during this period are: March 2011 - 4 animals (2 released alive), 2 animals (released alive); April 2013 - 2 animals (one released alive); December 2013 - 3 animals (all released alive).

In 2011, 1 animal in Massachusetts was classified as human interaction due to post-mortem mutilation. In 2014, 1 animal in Massachusetts was classified as human interaction due to attempts by public to return animal to sea. In 2014, 1 animal in Maine was classified as human interaction due to plastics ingestion.

* Data supplied by Nova Scotia Marine Animal Response Society (pers. comm.). 2014 data include a mass stranding of 7 animals all released alive and a single animal released alive. 2015 data include a mass stranding of 5 animals.

STATUS OF STOCK

White-sided dolphins are not listed as threatened or endangered under the Endangered Species Act. The Western North Atlantic stock of white-sided dolphins is not considered strategic under the Marine Mammal Protection Act. The estimated average annual human-related mortality does not exceed PBR but is not less than 10% of the calculated PBR; therefore, it cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The status of white-sided dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. A trend analysis has not been conducted for this species.

Based on the levels of uncertainties regarding the Gulf of Maine population within the western North Atlantic white-sided dolphin stock described above, it is expected these uncertainties will have little effect on the designation of the status of this population.

REFERENCES CITED

Ledwell, W. and J. Huntington 2012b. Incidental entrapments in fishing gear and stranding reported to and responded to by the Whale Release and Strandings Group in Newfoundland and Labrador and a summary of the Whale Release and Strandings program during 2012. Report to Fisheries and Oceans Canada, St. John's, Newfoundland, Canada. 18 pp.

