BLAINVILLE’S BEAKED WHALE (*Mesoplodon densirostris*):
Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Three species of *Mesoplodon* are known to occur in the Gulf of Mexico, based on stranding or sighting data (Hansen *et al.* 1995; Würsig *et al.* 2000). These are Blainville's beaked whale (*M. densirostris*), Gervais’ beaked whale (*M. europaeus*) and Sowerby’s beaked whale (*M. bidens*). Sowerby’s beaked whale in the Gulf of Mexico is considered extralimital because there is only 1 known stranding of this species (Bonde and O’Shea 1989) and because it normally occurs in northern temperate waters of the North Atlantic (Mead 1989). Identification of *Mesoplodon* to species in the Gulf of Mexico is very difficult, and in many cases, *Mesoplodon* and Cuvier’s beaked whale (*Ziphius cavirostris*) cannot be distinguished; therefore, sightings of beaked whales (Family Ziphiidae) are identified as *Mesoplodon* sp., Cuvier’s beaked whale, or unidentified Ziphiidae.

Blainville’s beaked whales appear to be widely but sparsely distributed in temperate and tropical waters of the world’s oceans (Leatherwood *et al.* 1976; Leatherwood and Reeves 1983). Strandings have occurred along the northwestern Atlantic coast from Florida to Nova Scotia (Schmidly 1981), and there have been 4 documented strandings and 2 sightings of this species in the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) (Hansen *et al.* 1995; Würsig *et al.* 2000). Beaked whales were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico from 1992 to 1998 (Hansen *et al.* 1996; Mullin and Hoggard 2000). Beaked whale sightings made during spring and summer vessel surveys have been widely distributed in waters >500 m deep (Maze-Foley and Mullin 2006; Figure 1). Although there are only a few records from Gulf of Mexico waters beyond U.S. boundaries (e.g., Ortega Ortiz 2002), Blainville’s beaked whales almost certainly occur throughout the oceanic Gulf of Mexico (Jefferson *et al.* 2008), which is also composed of waters belonging to Mexico and Cuba where there is currently little information on cetacean species abundance and distribution. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. Exclusive Economic Zone (EEZ).

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

The total number of Blainville’s beaked whales in the northern Gulf of Mexico is unknown. The best available abundance estimate is for *Mesoplodon* spp., and is a combined estimate for Blainville’s beaked whale and Gervais’ beaked whale. The estimate of abundance for *Mesoplodon* spp. in oceanic waters, using data from a summer 2009 oceanic survey, is 149 (CV=0.91; Table 1).

Earlier abundance estimates

All estimates of abundance were derived through the application of distance sampling analysis (Buckland *et al.* 2001) and the computer program DISTANCE (Thomas *et al.* 2004).

Figure 1. Distribution of beaked whale sightings from SEFSC vessel surveys during spring 1996-2001, summer 2003 and spring 2004, and summer 2009. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100-m and 1,000-m isobaths and the offshore extent of the U.S. EEZ.
1998) to line-transect survey data collected from ships in the oceanic northern Gulf of Mexico (i.e., 200-m isobath to seaward extent of the U.S. EEZ) and are summarized in Appendix IV.

From 1991 through 1994, and from 1996 through 2001 (excluding 1998), annual surveys were conducted during spring along a fixed plankton-sampling trackline. Due to limited survey effort in any given year during 1991-1994, the survey effort-weighted estimated average abundance of undifferentiated beaked whales (*Mesoplodon* spp. and unidentified *Ziphiidae*) for all surveys combined was 117 (CV=0.38) (Hansen et al. 1995). Hansen et al. (1995) did not estimate the abundance of *Mesoplodon* spp. For 1996 to 2001, the survey effort-weighted estimated average abundance for *Mesoplodon* spp. was 106 (CV=0.41) (Mullin and Fulling 2004; Table 1). This was a combined estimate for Blainville’s and Gervais’ beaked whales. The estimate for the same time period for unidentified *Ziphiidae* was 146 (CV=0.46) which may have also included an unknown number of Blainville’s beaked whales.

During summer 2003 and spring 2004, surveys dedicated to estimating cetacean abundance were conducted along a grid of uniformly-spaced transect lines from a random start. The estimate of abundance for *Mesoplodon* spp., pooled from 2003 to 2004, was 57 (CV=1.40) (Mullin 2007; Table 1). This was a combined estimate for Blainville’s and Gervais’ beaked whales. The estimate for the same time period for unidentified *Ziphiidae* was 337 (CV=0.40), which may have also included an unknown number of Blainville’s beaked whales.

Table 1. Summary of abundance estimates for northern Gulf of Mexico *Mesoplodon* spp., which is a combined estimate for Blainville’s beaked whale and Gervais’ beaked whale. Month, year and area covered during each abundance survey, and resulting abundance estimate (N_{best}) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr-Jun 1996-2001 (excluding 1998)</td>
<td>Oceanic waters</td>
<td>106</td>
<td>0.41</td>
</tr>
<tr>
<td>Jun-Aug 2003, Apr-Jun 2004</td>
<td>Oceanic waters</td>
<td>57</td>
<td>1.40</td>
</tr>
<tr>
<td>Jun-Aug 2009</td>
<td>Oceanic waters</td>
<td>149</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for *Mesoplodon* spp. is 149 (CV=0.91). The minimum population estimate for *Mesoplodon* spp. in the northern Gulf of Mexico is 77.

Current Population Trend

There are insufficient data to determine the population trends for this species due to uncertainty in species identification at sea. Three point estimates of *Mesoplodon* spp. abundance have been made based on data from surveys covering 1996-2009. The estimates vary by a maximum factor of nearly three. To determine whether changes in abundance have occurred over this period, an analysis of all the survey data needs to be conducted which incorporates covariates (e.g., survey conditions, season) that could potentially affect estimates. Nevertheless, differences in temporal abundance estimates will still be difficult to interpret without a Gulf of Mexico-wide understanding of *Mesoplodon* abundance. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based
on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the
constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of the minimum population size, one half the maximum net
productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum
population size for *Mesoplodon* spp. is 77. The maximum productivity rate is 0.04, the default value for cetaceans.
The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to
optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the
northern Gulf of Mexico *Mesoplodon* spp. is 0.8. It is not possible to determine the PBR for only Blainville’s beaked
whales.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a beaked whale during 1998-2010 (Yeung 1999; Yeung
2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009; Garrison and Stokes 2010; 2011). However, during 2007 there was 1 unidentified beaked whale released alive with no serious injury after an
entanglement interaction with the pelagic longline fishery (Fairfield and Garrison 2008).

Fisheries Information

The commercial fishery which potentially could interact with this stock in the Gulf of Mexico is the Atlantic
Ocean, Caribbean, Gulf of Mexico large pelagic longline fishery (Appendix III). Pelagic swordfish, tunas and billfish
are the targets of the longline fishery operating in the northern Gulf of Mexico. There were no reports of mortality or
serious injury to Blainville’s or other beaked whales by this fishery during 1998-2010 (Yeung 1999; Yeung 2001;
Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009; Garrison and Stokes 2010; 2011). However, during 2007, 1 unidentified beaked whale was observed entangled and released alive in the northern Gulf of Mexico. All gear
was removed and the animal was presumed to have no serious injuries (Fairfield and Garrison 2008).

Other Mortality

There were no strandings of *Mesoplodon* spp. or unidentified beaked whales during 2006–2010 (NOAA National
data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine
mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are
discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement
or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely
as does the ability to recognize signs of fishery interactions.

Since 1990, there have been 12 bottlenose dolphin die-offs or Unusual Mortality Events (UMEs) in the northern
Gulf of Mexico, and 1 of these included Blainville’s beaked whales. Between August 1999 and May 2000, 152
bottlenose dolphins died coincident with *Karenia brevis* blooms and fish kills in the Florida Panhandle. Additional
strandings included 3 Atlantic spotted dolphins, *Stenella frontalis*, 1 Risso’s dolphin, *Grampus griseus*, 2 Blainville’s
beaked whales, and 4 unidentified dolphins. An UME was declared for cetaceans in the northern Gulf of Mexico
beginning 1 February 2010; and, as of early 2012, the event is still ongoing. It includes cetaceans that stranded prior to
the Deepwater Horizon oil spill (see “Habitat Issues” below), during the spill, and after. During 2010, no animals from
this stock were considered to be part of the UME.

Several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated
with military naval activities. During the mid- to late 1980’s multiple mass strandings of Cuvier’s beaked whales (4 to
about 20 per event) and small numbers of Gervais’ beaked whales and Blainville’s beaked whales occurred in the
Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier’s beaked whales that live stranded and
subsequently died in the Mediterranean Sea on 12-13 May 1996 were associated with low frequency active sonar tests
conducted by the North Atlantic Treaty Organization (Frantzis 1998). In March 2000, 14 beaked whales live stranded
in the Bahamas; 6 beaked whales (5 Cuvier’s and 1 Blainville’s) died (Evans and England 2001; Balcomb and
Claridge 2001; Cox et al. 2006). Four Cuvier’s, 2 Blainville’s and 2 unidentified beaked whales were returned to sea.
The fate of the animals returned to sea is unknown. Necropsies were performed on 5 of the dead beaked whales and
revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (NMFS 2001; Cox et al. 2006).

HABITAT ISSUES
The Deepwater Horizon (DWH) MC252 drilling platform, located approximately 50 miles southeast of the Mississippi River Delta in waters about 1500m deep, exploded on 20 April 2010. The rig sank, and for 87 days millions of barrels of oil and gas were discharged from the wellhead until it was capped on 15 July 2010. During the response effort dispersants were applied extensively at the seafloor and at the sea surface (Lehr et al. 2010; OSAT 2010). In-situ burning, or controlled burning of oil at the surface, was also used extensively as a response tool (Lehr et al. 2010). The oil, dispersant and burn residue compounds present ecological concerns. The magnitude of this oil spill was unprecedented in U.S. history, causing impacts to wildlife, natural habitats and human communities along coastal areas from western Louisiana to the Florida Panhandle (NOAA 2011). It could be years before the entire scope of damage is ascertained (NOAA 2011).

Shortly after the oil spill, the Natural Resource Damage Assessment (NRDA) process was initiated under the Oil Pollution Act of 1990. A variety of NRDA research studies are being conducted to determine potential impacts of the spill on marine mammals. These studies have focused on identifying the type, magnitude, severity, length and impact of oil exposure to oceanic, coastal and estuarine marine mammals. The research is ongoing and likely will continue for some time. For continental shelf and oceanic cetaceans, the NOAA-led efforts include: aerial surveys to document the distribution, abundance, species and exposure of marine mammals and turtles relative to oil from DWH spill; and ship surveys to evaluate exposure to oil and other chemicals and to assess changes in animal behavior and distribution relative to oil exposure through visual and acoustic surveys, deployment of passive acoustic monitoring systems, collection of tissue samples, and deployment of satellite tags on sperm and Bryde’s whales.

Aerial surveys have observed Risso’s dolphins, spinner dolphins, pantropical spotted dolphins, striped dolphins, bottlenose dolphins and sperm whales swimming in oil in offshore waters (NOAA 2010a). The effects of oil exposure on marine mammals depend on a number of factors including the type and mixture of chemicals involved, the amount, frequency and duration of exposure, the route of exposure (inhaled, ingested, absorbed, or external) and biomedical risk factors of the particular animal (Geraci 1990; NOAA 2010b). In general, direct external contact with petroleum compounds or dispersants with skin may cause skin irritation, chemical burns and infections. Inhalation of volatile petroleum compounds or dispersants may irritate or injure the respiratory tract, which could lead to pneumonia or inflammation. Ingestion of petroleum compounds may cause injury to the gastrointestinal tract, which could affect an animal’s ability to digest or absorb food. Absorption of petroleum compounds or dispersants may damage kidney, liver and brain function in addition to causing immune suppression and anemia. Long term chronic effects such as lowered reproductive success and decreased survival may occur (Geraci 1990; NOAA 2010b).

STATUS OF STOCK
The status of Blainville’s beaked whales or other beaked whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Total human-caused mortality and serious injury for this stock is not known but none has been documented. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because it is assumed that the average annual human-related mortality and serious injury does not exceed PBR.

Disturbance by anthropogenic noise may prove to be an important habitat issue in some areas of this population’s range, notably in areas of oil and gas activities or where shipping or naval activities are high. Limited studies are currently being conducted to address this issue and its impact, if any, on this and other marine species.

REFERENCES CITED

