GERVAIS' BEAKED WHALE (Mesoplodon europaeus):
Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Three species of Mesoplodon are known to occur in the Gulf of Mexico, based on stranding or sighting data (Hansen et al. 1995; Würsig et al. 2000). These are Blainville's beaked whale (M. densirostris), Gervais' beaked whale (M. europaeus) and Sowerby's beaked whale (M. bidens). Sowerby’s beaked whale in the Gulf of Mexico is considered extralimital because there is only 1 known stranding of this species (Bonde and O'Shea 1989) and because it normally occurs in northern temperate waters of the North Atlantic (Mead 1989). Identification of Mesoplodon to species in the Gulf of Mexico is very difficult, and in many cases, Mesoplodon and Cuvier’s beaked whale (Ziphius cavirostris) cannot be distinguished; therefore, sightings of beaked whales (Family Ziphiidae) are identified as Mesoplodon sp., Cuvier’s beaked whale, or unidentified Ziphiidae.

Gervais’ beaked whales appear to be widely but sparsely distributed in temperate and tropical waters of the world’s oceans (Leatherwood et al. 1976; Leatherwood and Reeves 1983). strandings have occurred along the northwestern Atlantic coast from Florida to Nova Scotia (Schmidly 1981), and there have been 16 documented strandings in the Gulf of Mexico (Würsig et al. 2000). Beaked whales were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) from 1992 to 1998 (Hansen et al. 1996; Mullin and Hoggard 2000). Beaked whale sightings made during spring and summer vessel surveys have been widely distributed in waters >500 m deep (Maze-Foley and Mullin 2006; Figure 1).

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

The total number of Gervais’ beaked whales in the northern Gulf of Mexico is unknown. The best available abundance estimate is for Mesoplodon spp., and is a combined estimate for Gervais’ beaked whale and Blainville’s beaked whale. The estimate of abundance for Mesoplodon spp. in oceanic waters, using data pooled from summer 2003 and spring 2004 oceanic surveys, is 57 (CV=1.40) (Mullin 2007; Table 1). The estimate for the same time period for unidentified Ziphiidae is 337 (CV=0.40), which may also include an unknown number of Mesoplodon spp.

Earlier abundance estimates

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted in conjunction with bluefin tuna ichthyoplankton surveys during spring in the northern Gulf of Mexico from the 200-m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Annual cetacean surveys were conducted along a fixed plankton sampling trackline. Survey effort-weighted estimated average abundance of undifferentiated beaked whales (Ziphius and Mesoplodon spp.) for all surveys combined was 117 (CV=0.38) (Hansen et al. 1995). Similar surveys were conducted during
spring from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico. Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate. The estimate of abundance for *Mesoplodon* spp. in oceanic waters, pooled from 1996 to 2001, was 106 (CV=0.41) (Mullin and Fulling 2004; Table 1). This was a combined estimate for Blainville’s beaked whale and Gervais’ beaked whale. The estimate for the same time period for unidentified Ziphiidae was 146 (CV=0.46), which may also include an unknown number of Cuvier’s beaked whales.

Recent surveys and abundance estimates

During summer 2003 and spring 2004, line-transect surveys dedicated to estimating the abundance of oceanic cetaceans were conducted in the northern Gulf of Mexico. During each year, a grid of uniformly-spaced transect lines from a random start were surveyed from the 200-m isobath to the seaward extend of the U.S. EEZ using NOAA Ship *Gordon Gunter* (Mullin 2007).

As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Because most of the data for estimates prior to 2003 were older than this 8-year limit and due to the different sampling strategies, estimates from the 2003 and 2004 surveys were considered most reliable. The estimate of abundance for *Mesoplodon* spp. in oceanic waters, pooled from 2003 to 2004, was 57 (CV=1.40) (Mullin 2007; Table 1), which is the best available abundance estimate for these species in the northern Gulf of Mexico. This is a combined estimate for Blainville’s beaked whale and Gervais’ beaked whale. The estimate for the same time period for unidentified Ziphiidae was 337 (CV=0.40), which may also include an unknown number of Cuvier’s beaked whales.

Table 1. Summary of recent abundance estimates for northern Gulf of Mexico *Mesoplodon* spp., which is a combined estimate for Gervais’ beaked whale and Blainville’s beaked whale. Month, year and area covered during each abundance survey, and resulting abundance estimate (N_{best}) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr-Jun 1996-2001 (excluding 1998)</td>
<td>Oceanic waters</td>
<td>106</td>
<td>0.41</td>
</tr>
<tr>
<td>Jun-Aug 2003, Apr-Jun 2004</td>
<td>Oceanic waters</td>
<td>57</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for *Mesoplodon* spp. is 57 (CV = 1.40). The minimum population estimate for *Mesoplodon* spp. in the northern Gulf of Mexico is 24.

Current Population Trend

There are insufficient data to determine the population trends for this species due to uncertainty in species identification at sea. The pooled abundance estimate for *Mesoplodon* spp. for 2003-2004 of 57 (CV=1.40) and that for 1996-2001 of 106 (CV=0.41) are not significantly different (P>0.05), but due to the precision of the estimates, the power to detect a difference is low. These temporal abundance estimates are difficult to interpret without a Gulf of Mexico-wide understanding of *Mesoplodon* abundance. The Gulf of Mexico is composed of waters belonging to the U.S., Mexico and Cuba. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. EEZ. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for *Mesoplodon* spp. is 24. The maximum productivity rate is 0.04, the default value for cetaceans.
The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico *Mesoplodon* spp. is 0.2. It is not possible to determine the PBR for only Gervais’ beaked whales.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a beaked whale during 1998-2007 (Yeung 1999; 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008). However, during 2007 there was 1 unidentified beaked whale released alive with no serious injury after an entanglement interaction with the pelagic longline fishery (Fairfield and Garrison 2008).

Fisheries Information

The level of past or current, direct, human-caused mortality of beaked whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the northern Gulf of Mexico. There were no reports of mortality or serious injury to Gervais’ or other beaked whales by this fishery. However, during 2007, 1 unidentified beaked whale was observed entangled and released alive in the northern Gulf of Mexico. All gear was removed and the animal was presumed to have no serious injuries (Fairfield and Garrison 2008).

Other Mortality

There were no strandings of *Mesoplodon* spp. or unidentified beaked whales during 2004-2007. There were 2 reported stranding events of beaked whales in the Gulf of Mexico during 1999-2003. Two unidentified beaked whales mass stranded in Florida in December 1999, and 1 unidentified *Mesoplodon* stranded in Florida in January 2003. No evidence of human interactions was detected for these stranded animals (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 16 September 2008). Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated with military naval activities. During the mid- to late 1980s multiple mass strandings of Cuvier’s beaked whales (4 to about 20 per event) and small numbers of Gervais’ beaked whales and Blainville’s beached whales occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier’s beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 were associated with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998). In March 2000, 14 beaked whales live stranded in the Bahamas; 6 beaked whales (5 Cuvier’s and 1 Blainville’s) died (Balcomb and Claridge 2001; Evans and England 2001; Cox et al. 2006). Four Cuvier’s, 2 Blainville’s, and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown. Necropsies were performed on 5 of the dead beaked whales and revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Evans and England 2001; Cox et al. 2006).

STATUS OF STOCK

The status of Gervais’ beaked whales or other beaked whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Total human-caused mortality and serious injury for this stock is not known but none has been documented. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because it is assumed that the average annual human-related mortality and serious injury does not exceed PBR.

Disturbance by anthropogenic noise may prove to be an important habitat issue in some areas of this population’s range, notably in areas of oil and gas activities or where shipping or naval activities are high. Limited studies are currently being conducted to address this issue and its impact, if any, on this and other marine species.
REFERENCES CITED

