GERVAIS’ BEAKED WHALE (*Mesoplodon europaeus*):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Within the genus *Mesoplodon*, there are four species of beaked whales that reside in the northwest Atlantic. These include True's beaked whale, *Mesoplodon mirus*; Gervais' beaked whale, *M. europaeus*; Blainville's beaked whale, *M. densirostris*; and Sowerby's beaked whale, *M. bidens* (Mead 1989). These species are difficult to identify to the species level at sea; therefore, much of the available characterization for beaked whales is to genus level only. Stock structure for each species is unknown. Therefore, it is plausible the stock could actually contain multiple demographically independent populations that should themselves be stocks, because the current stock spans multiple eco-regions (Longhurst 1998; Spalding et al. 2007).

The distributions of *Mesoplodon* spp. in the northwest Atlantic are known principally from stranding records (Mead 1989; Nawojchik 1994; Mignucci-Giannoni et al. 1999; MacLeod et al. 2006; Jefferson et al. 2008). Off the U.S. Atlantic coast, beaked whale (*Mesoplodon* spp.) sightings have occurred principally along the shelf-edge and deeper oceanic waters (Figure 1; CETAP 1982; Waring et al. 1992; Tove 1995; Waring et al. 2001; Hamazaki 2002; Palka 2006). Most sightings were in late spring and summer, which corresponds to survey effort.

Gervais’ beaked whales are believed to be principally oceanic, and strandings have been reported from Cape Cod Bay to Florida, into the Caribbean and the Gulf of Mexico (NMFS unpublished data; Leatherwood et al. 1976; Mead 1989; MacLeod et al. 2006; Jefferson et al. 2008). This is the most common species of *Mesoplodon* to strand along the U.S. Atlantic coast. The northernmost stranding was on Cape Cod (Moore et al. 2005).

POPULATION SIZE

The total number of Gervais’ beaked whales off the eastern U.S. and Canadian Atlantic coast is unknown. However, several estimates of the undifferentiated complex of beaked whales (*Ziphius* and *Mesoplodon* spp.) from selected regions are available for select time periods (Barlow et al. 2006), as well as one estimate of Gervais’ beaked whales alone. Sightings are almost exclusively in the continental shelf edge and continental slope areas (Figure 1). The best abundance estimate for Gervais’ beaked whales is the result of the 2011 survey – 1,847 (CV=0.96).

Earlier abundance estimates

Please see Appendix IV for a summary of abundance estimates, including earlier estimates and survey descriptions. Due to changes in survey methodology these data should not be used to make comparisons to more current estimates.

Recent surveys and abundance estimates

An abundance of 2,839 (CV=0.78) for beaked whales was estimated from a line transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of trackline in waters north of Maryland.
(38ºN) to the Bay of Fundy (45ºN) (Table 1; Palka 2006). Shipboard data were collected using the two independent team line-transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and \(g(0) \), the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for \(g(0) \) and biases due to school size and other potential covariates (Palka 2005).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths > 50m) between Florida and Maryland (27.5 and 38ºN latitude) was conducted during June-August, 2004. The survey employed two independent visual teams searching with 25× bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included 5,659 km of trackline, and accomplished a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were corrected for visibility bias (\(g(0) \)) and group-size bias and analyzed using line-transect distance analysis (Palka 1995; Buckland et al. 2001). The resulting abundance estimate for beaked whales between Florida and Maryland was 674 animals (CV =0.36).

An abundance estimate of 922 (CV=1.47) undifferentiated beaked whales was obtained from an aerial survey conducted in August 2006 which covered 10,676 km of trackline in the region from the 2000 m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka pers. comm.).

An abundance estimate of 1,945 (CV=1.00) Gervais’ beaked whales was generated from a shipboard and aerial survey conducted during June-August 2011(Palka 2012). The aerial portion that contributed to the abundance estimate covered 5,313 km of tracklines that were over waters north of New Jersey and shallower than the 100-m depth contour, through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portion covered 3,017 km of tracklines that were in waters offshore of North Carolina to Massachusetts (waters that were deeper than the 100-m depth contour out to beyond the U.S. EEZ). Both sighting platforms used a two-simultaneous team data collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers, 2004). Shipboard data were inspected to determine if there was significant responsive movement to the ship (Palka and Hammond 2001). Because there was an insignificant amount of responsive movement for this species, the estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009). The abundance estimate includes a percentage of the estimate of animals identified as *Mesoplodon* spp. The percentage used is the ratio of positively identified Gervais’ beaked whales to the total of positively identified Sowerby’s beaked whales and positively identified Gervais’ beaked whales; the CV of the abundance estimate includes the variance of the estimated fraction. In addition, an abundance survey was conducted concurrently in the southern U.S. waters (from North Carolina to Florida), The abundance estimates from this southern survey are being calculated and are not available at this time. Although the 1990-2011 surveys did not sample exactly the same areas or encompass the entire beaked whale habitat, they did focus on segments of known or suspected high-use habitats off the northeastern U.S. coast. The collective 1990-2011 data suggest that, seasonally, at least several thousand beaked whales are occupying these waters, with highest levels of abundance in the Georges Bank region. NMFS surveys suggest that beaked whale abundance may be highest in association with Gulf Stream and warm-core ring features (Waring et al. 2001; Hamazaki 2002).

Because the estimates presented here were not dive-time corrected, they are likely negatively biased and probably underestimate actual abundance. Given that *Mesoplodon* spp. prefer deep-water habitats (Mead 1989) the bias may be substantial.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>(N_{\text{best}})</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Aug 2004</td>
<td>Maryland to the Bay of Fundy</td>
<td>2,839</td>
<td>0.78</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Maryland</td>
<td>674</td>
<td>0.36</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Bay of Fundy (COMBINED)</td>
<td>3,513</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for Gervais’ beaked whales is 1,847 (CV=0.96). The minimum population estimate for Gervais’ beaked whales is 935.

Current Population Trend

There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. *Mesoplodon* spp. life history parameters that could be used to estimate net productivity include: length at birth is 2 to 3 m, length at sexual maturity 6.1 m for females, and 5.5 m for males, maximum age for females were 30 growth layer groups (GLG’s) and for males was 36 GLG’s, which may be annual layers (Mead 1984).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for Gervais beaked whales is 935. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5. PBR for Gervais beaked whales is 9.4.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The 2006-2010 total average estimated annual mortality of Gervais’ beaked whales in observed fisheries in the U.S. Atlantic EEZ is zero.

Fishery Information

Total fishery-related mortality and serious injury cannot be estimated separately for each beaked whale species because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that any beaked whale stock which occurred in the U.S. Atlantic EEZ might have been subject to the observed fishery-related mortality and serious injury.

Estimated annual average fishery-related mortality or serious injury of this stock in 2006-2010 in U.S. fisheries was zero. Detailed fishery information is reported in Appendix III.

Earlier Interactions

There is no historical information available that documents incidental mortality in either U.S. or Canadian Atlantic coast fisheries (Read 1994). The only documented bycatch prior to 2003 of beaked whales is in the pelagic drift gillnet fishery (now prohibited). The bycatch only occurred from Georges Canyon to Hydrographer Canyon along the continental shelf break and continental slope during July to October (Northridge 1996). Forty-six fishery-related beaked whale mortalities were observed between 1989 and 1998. These included: 24 Sowerby’s; 4 True’s; 1 Cuvier’s; and 17 undifferentiated beaked whales. Recent analysis of biological samples (genetics and morphological analysis) has been used to determine species identifications for some of the bycaught animals. Estimates from the 1989 to 1993 period are for undifferentiated beaked whales. The estimated annual fishery-related mortality (CV in parentheses) was 60 in 1989 (0.21), 76 in 1990 (0.26), 13 in 1991 (0.21), 9.7 in 1992 (0.24) and 12 in 1993 (0.16). Estimates of bycatch mortality by species are available for the 1994-1998 period, although none of the animals were identified as Gervais’ beaked whales. Estimated annual fishery-related mortality for unidentified *Mesoplodon* beaked whales during this period was 0 in 1994, 3 (0) in 1995, 2 (0.5) in 1996, 6 (0.3) in 1997, 5 (0.2) in 1998, 12 (0.3) in 1999, and 3 (0) in 2000.
1995, 2 (0.25) in 1996, and 7 (0) in 1998. There was no fishery during 1997. During July 1996, one beaked whale was entangled and released alive with “gear in/around a single body part”.

One unidentified beaked whale was seriously injured in the U.S. Atlantic pelagic longline fishery in 2003. This interaction occurred in the Sargasso Sea fishing area. The estimated fishery-related combined mortality in 2003 was 5.3 beaked whales (CV=1.0). No serious injury or mortality interactions were reported prior to 2003 or in 2004–2010. The annual average combined mortality and serious injury in 2006-2010 was zero beaked whales.

Other Mortality

During 2006-2010, 17 Gervais’ beaked whales stranded along the U.S. Atlantic coast (Table 2). None of these animals displayed signs of human interaction.

Several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated with naval activities (D’Amico et al. 2009; Filadelfo et al. 2009). During the mid- to late 1980's multiple mass strandings of Cuvier’s beaked whales (4 to about 20 per event) and small numbers of Gervais’ beaked whale and Blainville’s beaked whale occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier’s beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 was associated with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998; D’Amico et al. 2009; Filadelfo et al. 2009). In March 2000, 14 beaked whales live stranded in the Bahamas; 6 beaked whales (5 Cuvier’s and 1 Blainville’s) died (Balcomb and Claridge 2001; NMFS 2001; Cox et al. 2006). Four Cuvier’s, 2 Blainville’s, and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown, since none of the whales have been resighted. Necropsy of 6 dead beaked whales revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Cox et al. 2006). Fourteen beaked whales (mostly Cuvier’s beaked whales but also including Gervais’ and Blainville’s beaked whales) stranded in the Canary Islands in 2002 (Cox et al. 2006, Fernandez et al. 2005; Martin et al. 2004). Gas bubble-associated lesions and fat embolism were found in necropsied animals from this event, leading researchers to link nitrogen supersaturation with sonar exposure (Fernandez et al. 2005).

<table>
<thead>
<tr>
<th>State</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Maryland</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Virginia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>North Carolina</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Georgia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Florida</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>17</td>
</tr>
</tbody>
</table>

STATUS OF STOCK

The western North Atlantic stock of Gervais’ beaked whale is not a strategic stock because average annual human-related mortality and serious injury does not exceed PBR. The total U.S. fishery mortality and serious injury for this group of species is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. The status of Gervais’ beaked whales relative to OSP in U.S. Atlantic EEZ is unknown. This species is not listed as threatened or endangered under the Endangered Species Act.

REFERENCES CITED

http://www.nefsc.noaa.gov/nefsc/publications/crd/crd1229/

