BELUGA WHALE (*Delphinapterus leucas*): Bristol Bay Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Beluga whales are distributed throughout seasonally ice-covered arctic and subarctic waters of the Northern Hemisphere (Gurevich 1980), and are closely associated with open leads and polynyas in ice-covered regions (Hazard 1988). Depending on season and region, beluga whales may occur in both offshore and coastal waters, with concentrations in Cook Inlet, Bristol Bay, the Yukon Delta, Norton Sound, Kasegaluk Lagoon, and the Mackenzie Delta (Hazard 1988). It is assumed that most beluga whales from these summering areas overwinter in the Bering Sea, excluding those found in the northern Gulf of Alaska (Shelden 1994). Seasonal distribution is affected by ice cover, tidal conditions, access to prey, temperature, and human interaction (Lowry 1985).

The general distribution pattern for beluga whales shows major seasonal changes. During the winter, they occur in offshore waters associated with pack ice. In the spring, they migrate to warmer coastal estuaries, bays, and rivers where they may molt (Finley 1982) and give birth to and care for their calves (Sergeant and Brodie 1969). Annual migrations may cover thousands of kilometers (Reeves 1990).

Summer movement patterns of Bristol Bay belugas were determined from satellite-linked tags deployed on 10 animals in the Kvichak River during 2002 and 2003, and 5 in the Nushagak River in 2006. Those whales used the shallow upper portions of Kvichak and Nushagak bays between May and August (Quakenbush, 2003) and remained in the nearshore waters of Bristol Bay through the months of September and October (Quakenbush and Citta, 2006). Data from two belugas whose tags lasted into December and January showed that they were in Nushagak and Kvichak bays, suggesting that some belugas do not leave the nearshore waters of Bristol Bay during the winter (Lori Quakenbush, Alaska Department of Fish and Game, Fairbanks, AK, pers comm. 31 March 2008).

The following information was considered in classifying beluga whale stock structure based on the Dizon et al. (1992) phylogeographic approach: 1) Distributional data: geographic distribution discontinuous in summer (Frost and Lowry 1990), distribution poorly known outside of summer; 2) Population response data: possible extirpation of local populations; distinct population trends between regions occupied in summer; 3) Phenotypic data: unknown; and 4) Genotypic data: mitochondrial DNA analyses indicate distinct differences among summering areas (O’Corry-Crowe et al. 1997). Based on this information, 5 stocks of beluga whales are recognized within U. S. waters: 1) Cook Inlet, 2) Bristol Bay, 3) eastern Bering Sea, 4) eastern Chukchi Sea, and 5) Beaufort Sea (Fig. 18).

POPULATION SIZE

The sources of information to estimate abundance for belugas in the waters of western and northern Alaska have included both opportunistic and systematic observations. Frost and Lowry (1990) compiled data collected from aerial surveys conducted between 1978 and 1987 that were designed to specifically estimate the number of beluga whales. Surveys did not cover the entire habitat of belugas, but were directed to specific areas at the times of year when belugas are known to concentrate during summer. Frost and Lowry (1990) reported an estimate of 1,000-1,500 for Bristol Bay, similar to that reported by Seaman et al. (1985). In 1994, the number of beluga whales in Bristol Bay was estimated at 1,555 (Lowry and Frost 1998). That estimate was based on a maximum count of 503 animals, which was corrected using radio-telemetry data for the proportion of animals that were diving and thus not visible at the surface (2.62, Frost and Lowry 1995), and for the proportion of newborns and yearlings not observed.
due to their small size and dark coloration (1.18; Brodie 1971). The Alaska Department of Fish and Game and the Alaska Beluga Whale Committee conducted beluga surveys in Bristol Bay in 1999, 2000, 2004 and 2005, with maximum counts of 690, 531, 794, and 1,067 (Lowry et al. 2008). Using the correction factors described above and the maximum counts for 2004 and 2005 gives population estimates of 2,455 and 3,299 (L. Lowry, University of Alaska Fairbanks, pers. comm.).

Minimum Population Estimate

The survey technique used for estimating the abundance of beluga whales in this stock is a direct count which incorporates correction factors. Given this survey method, estimates of the variance of abundance are unavailable. The abundance estimate is thought to be conservative because no correction has been made for whales that were at the surface but were missed by the observers, and the dive correction factor is probably negatively biased (Lowry and Frost 1998). Consistent with the recommendations of the Alaska Scientific Review Group (DeMaster 1997), a default CV(N) of 0.2 was used in the calculation of the minimum population estimate (N\text{MIN}). N\text{MIN} for this beluga whale stock is calculated using Equation 1 from the PBR Guidelines (Wade and Angliss 1997): N\text{MIN} = \frac{N}{e^{0.842 \times [\ln(1+[CV(N)])]^2}}. Using the average estimate for 2004 and 2005 of (N) of 2,877 and the default CV (0.2), N\text{MIN} for the Bristol Bay stock of beluga whales is 2,467.

Current Population Trend

Population estimates from the 1950s (Brooks 1955, Lensink 1961) suggested there were about 1,000-1,500 belugas in Bristol Bay. Aerial surveys flown in 1983 produced an abundance estimate of 1,250 which indicated that there had been little change in population size. A survey program involving replicate aerial counts using standardized methods was conducted during 1993-2005. Data from 28 complete counts of Kvichak and Nushagak bays made in good or excellent survey conditions were analyzed, and results showed that the population had increased by 65% over the 12-year period (Lowry et al. 2008).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

The estimated rate of increase in abundance of belugas in Bristol Bay during 1993-2005 was 4.8% per year (95% CI = 2.1%-7.5%; Lowry et al. 2008). This estimate exceeds the default cetacean maximum net productivity rate (R\text{MAX}) of 4% (Wade and Angliss 1997). It is currently not clear why this stock should be increasing as such a high rate, but possibilities include recovery from research kills in the 1960s, a reduction in subsistence harvests, and a delayed response to increases in salmon stocks (Lowry et al. 2008).

POTENTIAL BIOLOGICAL REMOVAL

Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the potential biological removal (PBR) is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: PBR = N\text{MIN} \times 0.5R\text{MAX} \times F\text{R}. As this stock is known to be increasing (Lowry et al. 2008), the recovery factor (F\text{R}) is 1.0 (Wade and Angliss 1997, DeMaster 1997; see discussion under PBR for the eastern Bering Sea stock). Thus, for the Bristol Bay stock of beluga whales, PBR = 49 animals (2,467 \times 0.02 \times 1.0).

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fisheries Information

Three different commercial fisheries that could have interacted with beluga whales in Bristol Bay were monitored for incidental take by fishery observers during 1990-97: Bering Sea (and Aleutian Islands) groundfish trawl, longline, and pot fisheries. Observers did not report any mortality or serious injury of beluga whales incidental to these groundfish fisheries.

Observers have never monitored the Bristol Bay commercial salmon set gillnet and drift gillnet fisheries which combined had 2,845 active permits in 2010. These fisheries are known to have caused mortality of beluga whales from this stock in the past (Frost et al. 1984). However, they have never been monitored by an observer program so there is no reliable information on the number of animals that have been or are being taken.

There is substantial effort in a subsistence gillnet fishery for salmon in Bristol Bay. Belugas are occasionally entangled and killed in this fishery, but there is no established protocol for non-commercial takes to be reported to NMFS. During 2005-2009, four mortalities of beluga in salmon nets were reported to the stranding network. One entanglement was reported as in a subsistence net, one was in a commercial salmon set net, and two
others were in unspecified salmon nets. Based on these stranding reports, the minimum annual mortality estimate due to fishery interactions over the 5-year period from 2005-2009 was 0.8 per year. However, this figure is clearly an underestimate because personal-use fishers are not required to report marine mammal takes, and the commercial fishery has not been observed. Also, it should be noted that in this region of western Alaska, belugas taken incidental to the personal-use or commercial salmon fisheries may be used by Alaska Native for subsistence and may be included in the subsistence harvest data reported below.

A reliable estimate of the mortality rate incidental to commercial fisheries is currently unavailable.

Subsistence/Native Harvest Information

Data on the subsistence take of beluga whales from the Bristol Bay stock is provided by the ABWC. The most recent subsistence harvest estimates for the stock are provided in Table 23 (Frost and Suydam in press, Alaska Beluga Whale Committee, 18 February 2010) These data show that the annual subsistence take by Alaska Natives averaged 20 belugas from the Bristol Bay stock during the 5-year period 2005-2009.

Table 23. Summary of the Alaska Native subsistence harvest from the Bristol Bay stock of beluga whales, 2005-2009. N/A indicates the data are not available.

<table>
<thead>
<tr>
<th>Year</th>
<th>Reported total number landed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>21</td>
</tr>
<tr>
<td>2006</td>
<td>20</td>
</tr>
<tr>
<td>2007</td>
<td>20</td>
</tr>
<tr>
<td>2008</td>
<td>19</td>
</tr>
<tr>
<td>2009</td>
<td>20</td>
</tr>
<tr>
<td>Mean annual number of animals landed (2005-2009):</td>
<td>20.0</td>
</tr>
</tbody>
</table>

STATUS OF STOCK

It is unknown whether the U. S. commercial fishery-related mortality level is insignificant and approaching zero mortality and serious injury rate (i.e., 10% of PBR; less than 4.9 per year) because a reliable estimate of the mortality rate incidental to commercial fisheries is currently unavailable. Bristol Bay beluga whales are not listed as “depleted” under the MMPA or listed as “threatened” or “endangered” under the Endangered Species Act. Based on currently available data, the estimated annual rate of human-caused mortality and serious injury (20 + 0.8 = 21) is not known to exceed the PBR (49). Because the population size has been increasing at a rate near Rmax, the sum of human impacts on the population are not a problem at this point (Lowry et al. 2008). Therefore, the Bristol Bay stock of beluga whales is not classified as a strategic stock. However, as noted previously, the estimate of fisheries-related mortality is unreliable and likely to be underestimated.

HABITAT CONCERNS

Evidence indicates that the Arctic climate is changing significantly and that one result of the change is a reduction in the extent of sea ice in at least some regions of the Arctic (ACIA 2004, Johannessen et al. 2004). These changes are likely to affect marine mammal species in the Arctic. Ice-associated animals, such as the beluga whale, may be sensitive to changes in Arctic weather, sea-surface temperatures, or ice extent, and the concomitant effect on prey availability. Currently, there are insufficient data to make reliable predictions of the effects of Arctic climate change on beluga whales, but Laidre et al. (2008) and Heide-Jørgensen (2010) concluded that on a worldwide basis belugas were likely to be less sensitive to climate change than other arctic cetaceans because of their wide distribution and flexible behavior. Increased human activity in the Arctic, including increasing oil and gas exploration and development, and increased nearshore development, have the potential to impact habitat for beluga whales (Moore et al. 2000, Lowry et al. 2006), but predicting the type and magnitude of the impacts is difficult at this time. Because the population size has been increasing (Lowry et al. 2008), habitat impacts most likely have been minimal during recent years.

CITATIONS

Finley, K. J. 1982. The estuarine habitat of the beluga or white whale, Delphinapterus leucas. Cetus 4:4-5.

