DALL’S PORPOISE (*Phocoenoides dalli*): Alaska Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Dall’s porpoise are widely distributed across the entire North Pacific Ocean (Fig. 1). They are found over the continental shelf adjacent to the slope and over deep (>2,500 m) oceanic waters (Hall 1979). They have been sighted throughout the North Pacific as far north as 65°N (Buckland et al. 1993) and as far south as 28°N in the eastern North Pacific (Leatherwood and Fielding 1974). The only apparent distribution gaps in Alaska waters are upper Cook Inlet and the shallow eastern flats of the Bering Sea. Throughout most of the eastern North Pacific they are present during all months of the year, although there may be seasonal onshore-offshore movements along the west coast of the continental U.S. (Loeb 1972, Leatherwood and Fielding 1974) and winter movements of populations out of areas with ice such as Prince William Sound (Hall 1979).

Surveys on the eastern Bering Sea shelf and slope to the 1,000 m isobath in 1999, 2000, 2002, 2004, 2008, and 2010 provided information about the distribution and relative abundance of Dall’s porpoise in this area (Moore et al. 2002; Friday et al. 2012, 2013). Dall’s porpoise were sighted on the shelf and slope in waters deeper than 100 m in 2002, 2008, and 2010 with greater densities at the shelf break than in shallower waters (Friday et al. 2013).

The following information was considered in classifying stock structure based on the Dizon et al. (1992) phylogeographic approach: 1) Distributional data: geographic distribution continuous; 2) Population response data: differential timing of reproduction between the Bering Sea and western North Pacific; 3) Phenotypic data: unknown; and 4) Genotypic data: unknown. The stock structure of eastern North Pacific Dall’s porpoise is not adequately understood at this time, but based on patterns of stock differentiation in the western North Pacific, where they have been more intensively studied, it is expected that separate stocks will emerge when data become available (Perrin and Brownell 1994). Based primarily on the population response data (Jones et al. 1986) and preliminary genetics analyses (Winans and Jones 1988), a delineation between Bering Sea and western North Pacific stocks has been recognized. However, similar data are not available for the eastern North Pacific; thus, one stock of Dall’s porpoise is recognized in Alaskan waters. Dall’s porpoise along the west coast of the continental U.S. from California to Washington comprise a separate stock and are reported separately in the Stock Assessment Reports for the U.S. Pacific Region.

POPULATION SIZE

Data collected from vessel surveys, performed by both U.S. fishery observers and U.S. researchers from 1987 to 1991, were analyzed to provide population estimates of Dall’s porpoise throughout the North Pacific and the Bering Sea (Hobbs and Lerczak 1993). The quality of data used in analyses was determined by the procedures recommended by Boucher and Boaz (1989). Survey effort was not well distributed throughout the U.S. Exclusive Economic Zone (EEZ) in Alaska and, as a result, Bristol Bay and the northern Bering Sea received little survey effort. Only three sightings were reported between 1987 and 1991 in this area by Hobbs and Lerczak (1993), resulting in an estimate of 9,000 (CV = 0.91). In the U.S. EEZ north and south of the Aleutian Islands, Hobbs and Lerczak (1993) reported an estimated abundance of 302,000 (CV = 0.11), whereas, for the Gulf of Alaska EEZ, they reported 106,000 (CV = 0.20). Combining these three estimates (9,000 + 302,000 + 106,000) results in a total abundance estimate of 417,000 (CV = 0.097) for the Alaska stock of Dall’s porpoise. Turnock and Quinn (1991) estimate that abundance estimates of Dall’s porpoise are inflated by as much as five times because of vessel
attraction behavior. Therefore, a corrected population estimate from 1987-1991 is 83,400 (417,000 × 0.2) for this stock. Surveys for this stock are more than 8 years old, consequently there are no reliable abundance data for the Alaska stock of Dall’s porpoise. No reliable abundance estimates for British Columbia are currently available.

Sighting surveys for cetaceans were conducted during NMFS pollock stock assessment surveys in 1999, 2000, 2002, 2004, 2008, and 2010 on the eastern Bering Sea shelf (Moore et al. 2002; Friday et al. 2012, 2013). The entire range of the survey was completed in three of those years (2002, 2008, and 2010) and Dall’s porpoise estimates were calculated for each of these surveys (Friday et al. 2013). The abundance estimate was 35,303 (CV = 0.53) in 2002, 14,543 (CV = 0.32) in 2008, and 11,143 (CV = 0.32) in 2010. Although the 2010 estimate is the lowest of the three years, it is not significantly different from the 2002 and 2008 estimates (Friday et al. 2013). These estimates have not been corrected for animals missed on the trackline (perception bias) or animals submerged when the ship passed (availability bias). They are also uncorrected for potential biases from responsive movements (ship attraction) and are, therefore, not used as minimum population estimates.

Minimum Population Estimate

The minimum population estimate (NMIN) for this stock is calculated using Equation 1 from the potential biological removal (PBR) guidelines (Wade and Angliss 1997): NMIN = N/exp(0.842×[ln(1+[CV(N)])2]1/2). However, since the abundance estimate is based on data older than 8 years, the NMIN is considered unknown.

Current Population Trend

At present, there is no reliable information on trends in abundance for the Alaska stock of Dall’s porpoise.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

A reliable estimate of the maximum net productivity rate is not currently available for the Alaska stock of Dall’s porpoise. Hence, until additional data become available, it is recommended that the cetacean maximum theoretical net productivity rate (RMAX) of 4% be employed for the Alaska stock of Dall’s porpoise (Wade and Angliss 1997). However, based on life-history analyses in Ferrero and Walker (1999), Dall’s porpoise reproductive strategy is not consistent with the delphinid pattern on which the default RMAX for cetaceans is based. In contrast to the delphinids, Dall’s porpoise mature earlier and reproduce annually which suggest that a higher RMAX may be warranted.

POTENTIAL BIOLOGICAL REMOVAL

Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the PBR is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: PBR = NMIN × 0.5RMAX × FR. Wade and Angliss (1997) recommend that abundance estimates older than 8 years no longer be used to calculate a PBR level; thus, because the abundance estimate for this stock is more than 8 years old, the NMIN is unknown and therefore the PBR level is undetermined.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

New Serious Injury Guidelines

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998, Andersen et al. 2008, NOAA 2012). NMFS defines serious injury as an “injury that is more likely than not to result in mortality.” Injury determinations for stock assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year period for which data are available.

Fisheries Information

Detailed information (including observer programs, observer coverage, and observed incidental takes of marine mammals) for federally-managed and state-managed U.S. commercial fisheries in Alaska waters is presented in Appendices 3-6 of the Alaska Stock Assessment Reports.

Until 2003, there were six different federally-regulated commercial fisheries in Alaska that could have interacted with Dall’s porpoise and were monitored for incidental mortality and serious injury by fishery observers. As of 2003, changes in fishery definitions in the MMPA List of Fisheries have resulted in separating these 6 fisheries into 22 fisheries (69 FR 70094, 2 December 2004). This change does not represent a change in fishing effort but provides managers with better information on the component of each fishery that is responsible for the
incidental serious injury or mortality of marine mammal stocks in Alaska. For the fisheries with observed takes, the range of observer coverage in 2009-2013, as well as the annual observed and estimated mortality and serious injury, are presented in Table 1.

The Alaska Peninsula/Aleutian Islands salmon drift gillnet fishery was monitored in 1990 (Wynne et al. 1991). One Dall’s porpoise mortality was observed, which extrapolated to an annual (total) incidental mortality and serious injury rate of 28 Dall’s porpoise (Table 1).

In 2012 and 2013, the Alaska Marine Mammal Observer Program (AMMOP) placed observers on independent vessels in the state-managed Southeast Alaska salmon drift gillnet fishery to assess mortality and serious injury of marine mammals. Areas around and adjacent to Wrangell and Zarembo Islands (ADF&G Districts 6, 7, and 8) were observed during the 2012-2013 program (Manly 2015). In 2012, one Dall’s porpoise was seriously injured. Based on the one observed serious injury, 18 serious injuries were estimated for Districts 6, 7, and 8 in 2012, resulting in an estimated mean annual mortality and serious injury rate of 9 Dall’s porpoise in 2012-2013 (Table 1). Since these three districts represent only a portion of the overall fishing effort in this fishery, we expect this to be a minimum estimate of mortality for the fishery. Note that the AMMOP has not observed the Southeast Alaska salmon drift gillnet fishery in the other districts; additionally, NMFS has not observed several other gillnet fisheries that are known to interact with this stock, therefore, the total estimated mortality and serious injury is unavailable. However, due to the large stock size, it is unlikely that unreported mortality and serious injury from those fisheries are a significant source of mortality. Combining the estimates from the Bering Sea and Gulf of Alaska fisheries (0.5) with the estimate from the Alaska Peninsula/Aleutian Islands salmon drift gillnet fishery (28) and the Southeast Alaska salmon drift gillnet fishery (9) results in an estimated average annual mortality and serious injury rate in observed fisheries of 38 Dall’s porpoise from this stock.

Table 1. Summary of incidental mortality and serious injury of the Alaska stock of Dall’s porpoise due to U.S. commercial fisheries from 2009 to 2013 (or the most recent data available) and calculation of the mean annual mortality and serious injury rate (Wynne et al. 1991; Breiwick 2013; Manly 2015; NMML, unpubl. data). Methods for calculating percent observer coverage are described in Appendix 6 of the Alaska Stock Assessment Reports.

<table>
<thead>
<tr>
<th>Fishery name</th>
<th>Years</th>
<th>Data type</th>
<th>Percent observer coverage</th>
<th>Observed mortality</th>
<th>Estimated mortality</th>
<th>Mean estimated annual mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bering Sea/Aleutian Is. pollock trawl</td>
<td>2009-2013</td>
<td>obs data</td>
<td>86 98 97 98 86</td>
<td>1 0 0 0 0</td>
<td>1.04 0 0 0 0</td>
<td>0.2 (CV = 0.19)</td>
</tr>
<tr>
<td>Bering Sea/Aleutian Is. Pacific cod longline</td>
<td>2009-2013</td>
<td>obs data</td>
<td>60 64 57 51 67</td>
<td>1 0 0 0 0</td>
<td>1.5 0 0 0 0</td>
<td>0.3 (CV = 0.77)</td>
</tr>
<tr>
<td>SE Alaska salmon drift gillnet (Districts 6, 7, 8)</td>
<td>2012-2013</td>
<td>obs data</td>
<td>6.4 6.6</td>
<td>1 0 0 0 0</td>
<td>18 0 0 0 0</td>
<td>9 (CV = 1.0)</td>
</tr>
<tr>
<td>AK Peninsula/Aleutian Is. salmon drift gillnet</td>
<td>1990-2013</td>
<td>obs data</td>
<td>4 6.6</td>
<td>1 0 0 0 0</td>
<td>28 0 0 0 0</td>
<td>28 (CV = 0.585)</td>
</tr>
<tr>
<td>Minimum total estimated annual mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38 (CV = 0.498)</td>
</tr>
</tbody>
</table>

From 2009 to 2013, no mortality or serious injury of Dall’s porpoise was reported to the NMFS Alaska Region stranding database (Helker et al. 2015).
Alaska Native Subsistence/Harvest Information

There are no reports of subsistence take of Dall’s porpoise in Alaska.

STATUS OF STOCK

Dall’s porpoise are not designated as “depleted” under the MMPA or listed as “threatened” or “endangered” under the Endangered Species Act. The level of human-caused mortality and serious injury (38) is not known to exceed the PBR, which is undetermined as the most recent abundance estimate is more than 8 years old. Because the PBR is undetermined, the annual level of U.S. commercial fishery-related mortality and serious injury that can be considered insignificant and approaching zero mortality and serious injury rate is unknown. The Alaska stock of Dall’s porpoise is not classified as a strategic stock. Population trends and status of this stock relative to its Optimum Sustainable Population are currently unknown.

HABITAT CONCERNS

While the majority of Dall’s porpoise are found throughout the North Pacific, there are also significant numbers found in shelf break and deeper nearshore areas. Thus, they are subject to a variety of habitat impacts. Of particular concern are nearshore areas, bays, channels, and inlets where some Dall’s porpoise are vulnerable to physical modifications of nearshore habitats (resulting from urban and industrial development, including waste management and nonpoint source runoff) and noise (Linnenschmidt et al. 2013). Climate change and changes to sea-ice coverage may be opening up new habitats, or resulting in shifts in habitat, as evident by an increase in the number of reported sightings of Dall’s porpoise in the Chukchi Sea (Funk et al. 2010, 2011). Shipping and noise from oil and gas activities may also be a habitat concern for Dall’s porpoise, particularly in the Chukchi Sea.

CITATIONS

