DALL’S PORPOISE (*Phocoenoides dalli*): Alaska Stock

**STOCK DEFINITION AND GEOGRAPHIC RANGE**

Dall’s porpoise are widely distributed across the entire North Pacific Ocean (Fig. 30). They are found over the continental shelf adjacent to the slope and over deep (2,500+ m) oceanic waters (Hall 1979). They have been sighted throughout the North Pacific as far north as 65°N (Buckland et al. 1993), and as far south as 28°N in the eastern North Pacific (Leatherwood and Fielding 1974). The only apparent distribution gaps in Alaska waters are upper Cook Inlet and the shallow eastern flats of the Bering Sea. Throughout most of the eastern North Pacific they are present during all months of the year, although there may be seasonal onshore-offshore movements along the west coast of the continental United States (Loeb 1972, Leatherwood and Fielding 1974), and winter movements of populations out of Prince William Sound (Hall 1979) and areas in the Gulf of Alaska and Bering Sea (NMFS, unpubl. data, National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115).

Recent surveys in the central-eastern and southeastern Bering Sea in 1999 and 2000 (see Fig. 40 for locations of surveys) resulted in new information about the distribution and relative abundance of Dall’s porpoise in these areas (Moore et al. 2002). Dall’s porpoise were abundant in both areas, were consistently found in deeper water (286 m; SE = 23 m) than harbor porpoise (67 m; SE = 3 m; t-test, P<0.0001) and were particularly clustered around the shelf break in the central-eastern Bering Sea (Moore et al. 2002).

The following information was considered in classifying stock structure based on the Dizon et al. (1992) phylogeographic approach: 1) Distributional data: geographic distribution continuous, 2) Population response data: differential timing of reproduction between the Bering Sea and western North Pacific; 3) Phenotypic data: unknown; and 4) Genotypic data: unknown. The stock structure of eastern North Pacific Dall’s porpoise is not adequately understood at this time, but based on patterns of stock differentiation in the western North Pacific, where they have been more intensively studied, it is expected that separate stocks will emerge when data become available (Perrin and Brownell 1994). Based primarily on the population response data (Jones et al. 1986) and preliminary genetics analyses Winans and Jones (1988), a delineation between Bering Sea and western North Pacific stocks has been recognized. However, similar data are not available for the eastern North Pacific, thus one stock of Dall’s porpoise is recognized in Alaska waters. Dall’s porpoise along the west coast of the continental U. S. from California to Washington comprise a separate stock and are reported separately in the Stock Assessment Reports for the Pacific Region.

**POPULATION SIZE**

Data collected from vessel surveys, performed by both U. S. fishery observers and U. S. researchers from 1987 to 1991, were analyzed to provide population estimates of Dall’s porpoise throughout the North Pacific and the Bering Sea (Hobbs and Lerczak 1993). The quality of data used in analyses was determined by the procedures recommended by Boucher and Boaz (1989). Survey effort was not well distributed throughout the U. S. Exclusive Economic Zone (EEZ) in Alaska, and as a result, Bristol Bay and the north Bering Sea received little survey effort. Only 3 sightings were reported in this area by Hobbs and Lerczak (1993), resulting in an estimate of 9,000 (CV = 0.91). In the U. S. EEZ north and south of the Aleutian Islands, Hobbs and Lerczak (1993) reported an estimated abundance of 302,000 (CV = 0.11), whereas for the Gulf of Alaska EEZ, they reported 106,000 (CV = 0.20).
Combining these three estimates (9,000 + 302,000 + 106,000) results in a total abundance estimate of 417,000 (CV = 0.097) for the Alaska stock of Dall’s porpoise. Turnock and Quinn (1991) estimate that abundance estimates of Dall’s porpoise are inflated by as much as 5 times because of vessel attraction behavior. Therefore, a corrected population estimate is 83,400 (417,000 × 0.2) for this stock. No reliable abundance estimates for British Columbia are currently available.

Results of the surveys in 1999 and 2000 in the central-eastern Bering Sea and southeastern Bering Sea provided provisional estimates of 14,312 (CV = 0.26) and 9,807 (CV = 0.20) Dall’s porpoise, respectively (Moore et al. 2002). These estimates have not been corrected for animals missed on the trackline or animals submerged when the ship passed. They are also uncorrected for potential biases from responsive movements (ship attraction) and are, therefore, not used as minimum population estimates.

**Minimum Population Estimate**

The minimum population estimate (NMIN) for this stock is calculated using Equation 1 from the PBR Guidelines (Wade and Angliss 1997):  
\[ N_{\text{MIN}} = N \times \exp(-0.842 \times \frac{\ln(1 + CV(N)^2)}{2}) \]  
Using the population estimate (N) of 83,400 and its associated CV of 0.097, N_MIN for the Alaska stock of Dall’s porpoise would be 76,874. However, since the abundance estimate is based on data older than 8 years, the N_MIN is considered unknown.

**Current Population Trend**

At present, there is no reliable information on trends in abundance for the Alaska stock of Dall’s porpoise.

**CURRENT AND MAXIMUM NET PRODUCTIVITY RATES**

A reliable estimate of the maximum net productivity rate is not currently available for the Alaska stock of Dall’s porpoise. Hence, until additional data become available, it is recommended that the cetacean maximum theoretical net productivity rate (R_MAX) of 4% be employed for the Alaska stock of Dall’s porpoise (Wade and Angliss 1997). However, based on life history analyses in Ferrero and Walker (1999), Dall’s porpoise reproductive strategy is not consistent with the delphinid pattern on which the default R_MAX for cetaceans is based. In contrast to the delphinids, Dall’s porpoise mature earlier and reproduce annually which suggest that a higher R_MAX may be warranted, pending further analyses.

**POTENTIAL BIOLOGICAL REMOVAL**

Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the potential biological removal (PBR) is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor:  
\[ \text{PBR} = N_{\text{MIN}} \times 0.5 \times R_{\text{MAX}} \times F_R \]  
This stock was considered to be within optimum sustainable population (Buckland et al. 1993), thus the recovery factor (F_R) for this stock was 1.0 (Wade and Angliss 1997). However, the PBR level is currently unknown. The PBR reported in the previous stock assessment was 1,537 animals (76,874 × 0.02 × 1.0). The estimate of abundance for Dall’s porpoise is now more than 8 years old; Wade and Angliss (1997) recommend that abundance estimates older than 8 years no longer be used to calculate a PBR level. Thus, because the abundance estimate for this stock is quite old, the N_MIN is unknown and therefore the PBR level is undetermined.

**ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY**

**Fisheries Information**

Until 2003, there were six different federally-regulated commercial fisheries in Alaska that could have interacted with Dall’s porpoise and were monitored for incidental mortality by fishery observers. As of 2003, changes in fishery definitions in the List of Fisheries have resulted in separating these six fisheries into 22 fisheries (69 FR 70094, 2 December 2004). This change does not represent a change in fishing effort, but provides managers with better information on the component of each fishery that is responsible for the incidental serious injury or mortality of marine mammal stocks in Alaska. For the fisheries with observed takes, the range of observer coverage over the 5-year period (2002-2006), as well as the annual observed and estimated mortalities are presented in Table 31 (Perez 2006, Perez unpubl. ms). More current data on estimated fishery-related serious injury and mortality are being analyzed and will be available for inclusion in the 2010 SARs.

The Alaska Peninsula and Aleutian Island salmon driftnet fishery was monitored in 1990. Observers were onboard 59 (38.3%) of the 154 vessels participating in the fishery, monitoring a total of 373 sets, or less than 4% of the estimated number of sets made by the fleet (Wynne et al. 1991). One Dall’s porpoise mortality was observed.
which extrapolated to an annual (total) incidental mortality rate of 28 Dall’s porpoise. Combining the estimates from the Bering Sea and Gulf of Alaska fisheries presented above \((1.09 + 0.48 = 1.6)\) with the estimate from the Alaska Peninsula and Aleutian Island salmon drift gillnet fishery \((28)\) results in an estimated annual incidental kill rate in observed fisheries of 29.6 porpoise per year from this stock.

The Prince William Sound salmon drift gillnet fishery was also monitored by observers during 1990 and 1991, with no incidental mortality of Dall’s porpoise reported. In 1990, observers boarded 300 \((57.3\%)\) of the 524 vessels that fished in the Prince William Sound salmon drift gillnet fishery, monitoring a total of 3,166 sets, or roughly 4\% of the estimated number of sets made by the fleet (Wynne et al. 1991). In 1991, observers boarded 531 \((86.9\%)\) of the 611 registered vessels and monitored a total of 5,875 sets, or roughly 5\% of the estimated sets made by the fleet (Wynne et al. 1992).

Table 31. Summary of incidental mortality of Dall’s porpoise (Alaska stock) due to commercial fisheries from 2002 to 2006 and calculation of the mean annual mortality rate.

<table>
<thead>
<tr>
<th>Fishery name</th>
<th>Years</th>
<th>Data type</th>
<th>Observer coverage</th>
<th>Observed mortality (in given yrs.)</th>
<th>Estimated mortality (in given yrs.)</th>
<th>Mean annual mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bering Sea/ Aleutian Is. (BSAI) pollock trawl</td>
<td>2002</td>
<td>obs data</td>
<td>80.0</td>
<td>1</td>
<td>1.4</td>
<td>1.09 (CV = 0.27)</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>data</td>
<td>82.2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td></td>
<td>81.2</td>
<td>1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td></td>
<td>77.3</td>
<td>1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td></td>
<td>73.0</td>
<td>1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Gulf of Alaska (GOA) pollock trawl</td>
<td>2002</td>
<td>obs data</td>
<td>26.0</td>
<td>0</td>
<td>0</td>
<td>0.48 (CV = 0.70)</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td></td>
<td>31.2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td></td>
<td>27.4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td></td>
<td>24.2</td>
<td>1</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td></td>
<td>26.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AK Peninsula/ Aleutian Island salmon drift gillnet</td>
<td>1990</td>
<td>obs data</td>
<td>4%</td>
<td>1</td>
<td>28</td>
<td>28 (CI: 1-81)</td>
</tr>
<tr>
<td>Minimum total annual mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.6</td>
</tr>
</tbody>
</table>

Note that no observers have been assigned to several of the gillnet fisheries that are known to interact with this stock, making the estimated mortality unreliable. However, due to the large stock size it is unlikely that unreported mortalities from those fisheries are a significant source of mortality.

**Subsistence/Native Harvest Information**

There are no reports of subsistence take of Dall’s porpoise in Alaska.

**STATUS OF STOCK**

Dall’s porpoise are not listed as “depleted” under the MMPA or listed as “threatened” or “endangered” under the Endangered Species Act. The level of human-caused mortality and serious injury \((30)\) is not known to exceed the PBR, which is undetermined as the most recent abundance estimate is more than 8 years old. Because the PBR is undetermined, the level of annual U.S. commercial fishery-related mortality that can be considered insignificant and approaching zero mortality and serious injury rate is unknown. The Alaska stock of Dall’s porpoise is not classified as a strategic stock. Population trends and status of this stock relative to OSP are currently unknown.

**CITATIONS**


142


