PACIFIC WHITE-SIDED DOLPHIN (*Lagenorhynchus obliquidens*): California/Oregon/Washington, Northern and Southern Stocks

STOCK DEFINITION AND GEOGRAPHIC RANGE

Pacific white-sided dolphins are endemic to temperate waters of the North Pacific Ocean, and are common both on the high seas and along the continental margins. Off the U.S. west coast, Pacific white-sided dolphins have been seen primarily in shelf and slope waters (Figure 1). Sighting patterns from recent aerial and shipboard surveys conducted in California, Oregon and Washington (Green et al. 1992; 1993; Barlow 1995; Forney et al. 1995) suggest seasonal north-south movements, with animals found primarily off California during the colder water months and shifting northward into Oregon and Washington as water temperatures increase in late spring and summer (Green et al. 1992; Forney 1994).

Stock structure throughout the North Pacific is poorly understood, but based on morphological evidence, two forms are known to occur off the California coast (Walker et al. 1986; Chivers et al. 1993). Specimens belonging to the northern form were collected from north of about 33°N, (Southern California to Alaska), and southern specimens were obtained from about 36°N southward along the coasts of California and Baja California. Samples of both forms have been collected in the Southern California Bight, but it is unclear whether this indicates sympatry in this region or whether they may occur there at different times (seasonally or interannually). Recent genetic analyses have confirmed the distinctness of animals found off Baja California from animals occurring in U.S. waters north of Point Conception, California and in the high seas of the North Pacific (Lux et al. 1997). Based on these genetic data, an area of mixing between the two forms appears to be located off Southern California (Lux et al. 1997).

Although there is clear evidence that two forms of Pacific white-sided dolphins occur along the U.S. west coast, there are no known differences in color pattern, and it is not currently possible to distinguish animals without genetic or morphometric analyses. Geographic stock boundaries appear dynamic and are poorly understood, and therefore cannot be used to differentiate the two forms. Until means of differentiating the two forms for abundance and mortality estimation are developed, these two stocks must be managed as a single unit; however, this is an undesirable management situation. Furthermore, Pacific white-sided dolphins are not restricted to U.S. territorial waters, but cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not for other fisheries.
which may take this species (e.g. gillnet fisheries). Additional means of differentiating the two types must be found, and cooperative management with Mexico is particularly important for this species, given the apparently dynamic nature of geographical stock boundaries. Until these goals are accomplished, the management stock includes animals of both forms. For the Marine Mammal Protection Act (MMPA) stock assessment reports, Pacific white-sided dolphins within the Pacific U.S. Exclusive Economic Zone are divided into two discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) Alaskan waters.

POPULATION SIZE

The most recent estimates of abundance for Pacific white-sided dolphins are based on two summer/autumn shipboard surveys conducted within 300 nmi of the coasts of California, Oregon, and Washington in 2005 (Forney 2007) and 2008 (Barlow 2010). The distribution of Pacific white-sided dolphins throughout this region is highly variable, apparently in response to oceanographic changes on both seasonal and interannual time scales (Forney and Barlow 1998). As oceanographic conditions vary, Pacific white-sided dolphins may spend time outside the U.S. Exclusive Economic Zone, and therefore a multi-year average abundance estimate including California, Oregon and Washington is the most appropriate for management within U.S. waters. The 2005-2008 geometric mean abundance estimate for California, Oregon and Washington waters based on the two most recent ship surveys is 26,930 (CV=0.28) Pacific white-sided dolphins (Forney 2007, Barlow, 2010).

Minimum Population Estimate
The log-normal 20th percentile of the 2005-2008 average abundance estimate is 21,406 Pacific white-sided dolphins.

Current Population Trend

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
No information on current or maximum net productivity rates is available for Pacific white-sided dolphins off the U.S. west coast.

POTENTIAL BIOLOGICAL REMOVAL
The potential biological removal (PBR) level for this stock is calculated as the minimum population size (21,406) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.45 (for a species of unknown status with a mortality rate CV > 0.60 and ≤0.80; Wade and Angliss 1997), resulting in a PBR of 193 Pacific white-sided dolphins per year.

HUMAN- CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information
A summary of recent fishery mortality and injury for this stock of Pacific white-sided dolphin is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Including mortality from drift gillnet, groundfish trawl, and unknown fisheries, the average annual fishery-related mortality of Pacific white-sided dolphins is 10.5 (CV = 0.65) animals. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2004-2008 (Carretta et al. 2005 Carretta and Enriquez 2006, 2007, 2009a, 2009b). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the relative rarity of Pacific white-sided dolphin entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species.

Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to
those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002).

Table 1. Summary of available information on the incidental mortality and injury of Pacific white-sided dolphins (California/Oregon/Washington Stock) in commercial fisheries that might take this species. All observed entanglements of Pacific white-sided dolphins resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses; n/a = not available. Mean annual takes are based on 2004-2008 data unless noted otherwise.

<table>
<thead>
<tr>
<th>Fishery Name</th>
<th>Data Type</th>
<th>Year(s)</th>
<th>Percent Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Annual Mortality</th>
<th>Mean Annual Takes (CV in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA/OR thresher shark/swordfish drift gillnet fishery</td>
<td>observer</td>
<td>2004, 2005, 2006, 2007, 2008</td>
<td>20.6%, 20.9%, 18.5%, 16.4%, 13.5%</td>
<td>0, 0, 0, 1, 5</td>
<td>0, 0, 0, 6 (1.00), 37 (0.70)</td>
<td>8.6 (0.77)</td>
</tr>
<tr>
<td>WA/OR/CA domestic groundfish trawl (At-sea processing Pacific hake fishery)</td>
<td>observer</td>
<td>2002, 2003, 2004, 2005, 2006</td>
<td>100%, 100%, 100%, 100%, 100%</td>
<td>0, 1, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0.2 n/a</td>
</tr>
<tr>
<td>West Coast limited entry bottom trawl fishery</td>
<td>observer</td>
<td>2002, 2003, 2004, 2005</td>
<td>10-33%, varies by reporting area</td>
<td>1 in 2003</td>
<td>7.5 (0.93)</td>
<td>1.9 (0.93)</td>
</tr>
<tr>
<td>Unknown fishery</td>
<td>stranding</td>
<td>2004, 2005, 2006, 2007, 2008</td>
<td>1</td>
<td>0, 0, 0, 0, 0</td>
<td>n/a</td>
<td>≥0.2 (n/a)</td>
</tr>
<tr>
<td>Minimum total annual takes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.5 (0.65)</td>
</tr>
</tbody>
</table>

Low levels of mortality for Pacific white-sided dolphins have also been documented in the California/Oregon/Washington domestic groundfish trawl fisheries (Perez and Loughlin 1991; Northwest Fisheries Science Center 2008). Between 2004-2008, with 100% of the fishing effort observed, one Pacific white-sided dolphin was reported killed in the at-sea processing portion of the Pacific whiting trawl fishery (NMFS, unpublished data). One white-sided dolphin death was reported in the limited entry bottom trawl fishery in 2003, resulting in a bycatch estimate of 7.5 animals (Table 1).

Other removals

In 2008, fifteen Pacific white-sided dolphin were incidentally killed in California waters during scientific sardine trawling operations conducted by NMFS (Southwest Regional Office Stranding Program, unpublished data). Three mortality events occurred in April trawls, after which NMFS scientists met to discuss & implement a mitigation plan to avoid future mortality events. The initial mitigation plan included use of 162 dB acoustic pingers, a marine mammal watch, and scheduling trawls to occur when the ship first arrived on station to avoid attracting animals to a stationary vessel. During August 2008 trawls, twelve additional Pacific white-sided dolphin were killed. One trawl caught 11 Pacific white-sided
dolphins and six northern right whale dolphins. In 2009, a marine mammal excluder device was added to the trawls. In 2009, no additional mortality was observed during 42 trawls. However, a group of three Pacific white-sided dolphin became entangled in the trawl during retrieval. Two animals were brought aboard alive and immediately released, while a third animal escaped through the excluder device. Eight additional Pacific white-sided dolphins were killed in research surface trawls between 2005 and 2006 (NMFS Northwest Region, unpublished data). The average annual research-related mortality of Pacific white-sided dolphin from 2004 to 2008 is 4.6 animals.

Additional removals of Pacific white-sided dolphins from the wild have occurred in live-capture fisheries off California. Brownell et al. (1999) estimate a minimum total live capture of 128 Pacific white-sided dolphins between the late 1950s and 1993. The most recent capture was in November 1993, when three animals were taken for public display (Forney 1994). No MMPA permits are currently active for live-captures of Pacific white-sided dolphins.

STATUS OF STOCK

The status of Pacific white-sided dolphins in California, Oregon and Washington relative to OSP is not known, and there is no indication of a trend in abundance for this stock. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. Including commercial fishery (10.5/yr) and research-related mortality (4.6/yr), the average annual mortality for the 5-year period 2004-2008 is 15.1 animals.

The average annual human-caused mortality in 2004-2008 (15.1 animals) is estimated to be less than the PBR (193), and therefore they are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate.

REFERENCES

Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FADs, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre.

Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p.

