STOCK DEFINITION AND GEOGRAPHIC RANGE

The coastal morphotype of bottlenose dolphin is continuously distributed along the Atlantic coast south of Long Island, New York, to the Florida peninsula, including inshore waters of the bays, sounds and estuaries. Except for animals residing within the Southern North Carolina and Northern North Carolina Estuarine Systems (e.g., Waring et al. 2009), estuarine dolphins along the U.S. east coast have not previously been included in stock assessment reports. Several lines of evidence support a distinction between dolphins inhabiting coastal waters near the shore and those present in the inshore waters of the bays, sounds and estuaries. Photo-identification (photo-ID) and genetic studies support the existence of resident estuarine animals in several areas (Caldwell 2001; Gubbins 2002; Zolman 2002; Gubbins et al. 2003; Mazzoli et al. 2005; Litz 2007), and similar patterns have been observed in bays and estuaries along the Gulf of Mexico coast (Wells et al. 1987; Balmer et al. 2008). Recent genetic analyses using both mitochondrial DNA and nuclear microsatellite markers found significant differentiation between animals biopsied along the coast and those biopsied within the estuarine systems at the same latitude (NMFS unpublished data). Similar results have been found off the west coast of Florida (Sellas et al. 2005).

The Jacksonville Estuarine System (JES) stock is bounded in the north by the Florida/Georgia border at Cumberland Sound, abutting the southern border of the Southern Georgia Estuarine System stock, and extends south to Jacksonville Beach, Florida. This encompasses an area defined during a photo-ID field study of bottlenose dolphin residency patterns in the area (Caldwell 2001). The habitat is comprised of several large brackish rivers, including St. Mary’s, Amelia, Nassau, Fort George and St. John’s River (Figure 1). The St. John’s River is a deep, swift moving river with heavy boat and shipping activity (Caldwell 2001). The remainder of the area is made up of tidal marshes and riverine systems averaging 2m in depth over sand, mud or oyster beds, and is bisected by the Intracoastal Waterway. The borders are subject to change upon further study of dolphin residency patterns in estuarine waters of southern Georgia and Florida.

The JES stock has been defined as a separate estuarine stock primarily by the results of photo-ID and genetic studies. Caldwell (2001) investigated the social structure of bottlenose dolphins inhabiting the estuarine waters between the St. Mary’s River and Jacksonville Beach, Florida, using photo-ID and behavioral data obtained from December 1994 through December 1997. Three behaviorally different communities were identified during this study, namely the estuarine waters north of St. John’s River (termed the Northern area), the estuarine waters south of St. John’s River (the Southern area) and the coastal area, all of which differed in density, habitat fidelity and social affiliation patterns. Caldwell (2001) found that dolphins inhabiting the Northern area were the most isolated, with 96% of the groups observed containing dolphins that had been photographically identified only in this area, demonstrating strong year-round site fidelity.
Cluster analyses suggested that dolphins using the Northern area did not socialize with those using the Southern area. In the Southern area, 78% of the groups were photographed only in this region (Caldwell 2001). However, these dolphins migrated into and out of the Jacksonville area each year, returning to the area during 3 consecutive summers, suggesting the Southern area dolphins may show summer site fidelity as opposed to the year-round fidelity demonstrated in the Northern area. Caldwell (2001) found that dolphins found in the coastal areas were highly mobile, had fluid social affiliations, were not sighted more than 8 times over the entire study and showed no long-term (>4 months) site fidelity. Three of these dolphins were also sighted off South Carolina, behind shrimp boats. These coastal dolphins are thus considered to be members of the coastal morphotype stocks.

The JES stock demonstrated oscillating abundance year round (Gubbins et al. 2003) with low numbers reported in January and December. There was a positive correlation between dolphin abundance and water temperature, with peak numbers seen when water temperatures rose above 16°C. Caldwell (2001) examined genetic differentiation among the Northern, Southern and coastal areas of the study site using mitochondrial DNA sequences and microsatellite data. Both mitochondrial DNA haplotype and microsatellite allele frequencies differed significantly between the Northern and Southern sampling areas. Differentiation between the Southern sampling area and the coast was lower, but still significant. These genetic data are in line with the behavioral analyses. However, sample sizes were small for these estuarine regions (n≤25) and genetic analyses did not account for the high number of closely related individuals within the dataset. Further analyses are necessary to confirm the results.

Despite the strong fidelity to the Northern and Southern areas, dolphins were photographed outside their preferred areas, supporting the proposal to include both these areas within the boundaries of the JES stock. Future analyses may provide additional information on the importance of the Southern area to the resident stock, and thus the inclusion of both areas in this stock boundary may be modified with additional data or further analyses.

Dolphins residing within estuaries south of this stock down to the northern boundary of the Indian River Lagoon Estuarine System stock are currently not included in any Stock Assessment Report. There are insufficient data to determine whether animals south of the JES stock exhibit affiliation to the JES stock, the IRLES stock to the south or are simply transient animals associated with coastal stocks. Further research is needed to establish affinities of dolphins in this region. It should be noted that during 2003-2007, there were 16 stranded bottlenose dolphins in this region in estuarine waters. Evidence of human interactions was detected for 4 of these stranded dolphins, 2 of which involved fishery interactions, including a crab pot entanglement. The other 2 interactions involved boat collisions (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 10 November 2008).

POPULATION SIZE

The total number of bottlenose dolphins residing within the JES stock is unknown. Data collected by Caldwell (2001) were incorporated into a larger study that used mark-recapture analyses to calculate abundance in 4 estuarine areas along the eastern U.S. coast (Gubbins et al. 2003). Sighting records collected only from May through October were used, as this limited time period was determined to reduce the possibility of violating the mark-recapture model’s assumption of geographic closure and mark retention. Based on photo-ID data from 1994 to 1997, 334 individually identified dolphins were observed (Gubbins et al. 2003), which included an unspecified number of seasonal residents and transients. Mark-recapture analyses included all the 334 individually identifiable dolphins, and the population size for the JES stock was calculated to be 412 residents (CV=0.06; Gubbins et al. 2003). This is an overestimate of the stock abundance in the area covered by the study because it includes non-resident and seasonally resident dolphins. Caldwell (2001) indicated that 122 dolphins were resighted at least 10 times in the JES, with 33 individuals observed primarily in the Northern area, and 89 individuals reported to use the Southern area.

Minimum Population Estimate

The minimum population estimate for this stock of bottlenose dolphins is unknown.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. The maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).
POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for the JES stock is unknown. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because this stock is of unknown status. PBR is unknown for this stock.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The total annual human-caused mortality and serious injury within the JES stock during 2003-2007 is unknown. It is not possible to estimate the total number of interactions or mortalities associated with crab pots since there is no systematic observer program. However, this interaction is a common occurrence elsewhere within estuarine habitats of the southeastern U.S. coast and does result in mortalities of estuarine bottlenose dolphins (Burdett and McFee 2004).

Fishery Information

Crab Pots

Other Mortality

From 2003 to 2007, 16 additional stranded bottlenose dolphins were recovered within the JES area (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 10 November 2008). For 3 dolphins, no evidence of human interactions was detected. It was not possible to make a determination of human interaction for the remaining 12 strandings. Stranding data underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals that die or are seriously injured in fishery interactions are discovered, reported or investigated, nor will all of those that are found necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

This stock inhabits areas with significant drainage from industrial and urban sources, and as such is exposed to contaminants in runoff from these. No contaminant analyses have yet been conducted in this area, so there is no estimate of indirect human-caused mortality from pollution or habitat degradation for this stock. In other estuarine areas where such analyses have been conducted, exposure to anthropogenic contaminants have been found to likely have an effect (Hansen et al. 2004; Schwacke et al. 2004; Reif et al. 2008).

STATUS OF STOCK

From 1995 to 2001, NMFS recognized only a single migratory stock of coastal bottlenose dolphins in the western North Atlantic, and the entire stock was listed as depleted as a result of the 1987-1988 mortality event. Scott et al. (1988) suggested that dolphins residing in the bays, sounds and estuaries adjacent to these coastal waters were not affected by the mortality event and these animals were explicitly excluded from the depleted listing (Federal Register: 54(195), 41654-41657; 56(158), 40594-40596; 58(64), 17789-17791).

The status of the JES stock relative to OSP is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this stock. Total human-caused mortality and serious injury for this stock is not known and there is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. The impact of crab pots on estuarine bottlenose dolphins is currently unknown, but has been shown to be considerable in the Charleston Estuarine System stock (Burdett and McFee 2004). Because the stock size is currently unknown, but likely small and relatively few mortalities and serious injuries would exceed PBR, the NMFS considers this stock to be a strategic stock.
REFERENCES CITED