HARBOR PORPOISE (Phocoena phocoena vomerina): Northern Oregon/Washington Coast Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

In the eastern North Pacific Ocean, harbor porpoise are found in coastal and inland waters from Point Barrow, along the Alaskan coast, and down the west coast of North America to Point Conception, California (Gaskin 1984). Harbor porpoise are known to occur year-round in the inland trans-boundary waters of Washington and British Columbia, Canada (Osborne et al. 1988) and along the Oregon/Washington coast (Barlow 1988, Barlow et al. 1988, Green et al. 1992). Aerial survey data from coastal Oregon and Washington, collected during all seasons, suggest that harbor porpoise distribution varies by depth (Green et al. 1992). Although distinct seasonal changes in abundance along the west coast have been noted, and attributed to possible shifts in distribution to deeper offshore waters during late winter (Dohl et al. 1983, Barlow 1988), seasonal movement patterns are not fully understood.

Investigation of pollutant loads in harbor porpoise ranging from California to the Canadian border suggests restricted harbor porpoise movements (Calambokidis and Barlow 1991). Stock discreteness in the eastern North Pacific was analyzed using mitochondrial DNA from samples collected along the west coast (Rosel 1992) and is summarized in Osmek et al. (1994). Two distinct mtDNA groupings or clades exist. One clade is present in California, Washington, British Columbia, and Alaska (no samples were available from Oregon), while the other is found only in California and Washington. Although these two clades are not geographically distinct by latitude, the results may indicate a low mixing rate for harbor porpoise along the west coast of North America. Further genetic testing of the same data, along with additional samples, found significant genetic differences for four of the six pair-wise comparisons between the four areas investigated: California, Washington, British Columbia, and Alaska (Rosel et al. 1995). These results demonstrate that harbor porpoise along the west coast of North America are not panmictic or migratory and that movement is sufficiently restricted that genetic differences have evolved. Recent preliminary genetic analyses of samples ranging from Monterey Bay, California, to Vancouver Island, British Columbia, indicate that there is small-scale subdivision within the U.S. portion of this range (Chivers et al. 2002, 2007). This is consistent with low movement suggested by genetic analysis of harbor porpoise specimens from the North Atlantic, where numerous stocks have been delineated with clinal differences over areas as small as the waters surrounding the British Isles.

Using the 1990-1991 aerial survey data of Calambokidis et al. (1993) for water depths <50 fathoms, Osmek et al. (1996) found significant differences in harbor porpoise mean densities (Z=6.9, P<0.001) between the waters of coastal Oregon/Washington and inland Washington/southern British Columbia, Canada (i.e., Strait of Juan de Fuca/San Juan Islands). Following a risk-averse management strategy, two stocks were recognized in the waters of Oregon and Washington, with a boundary at Cape Flattery, Washington. Based on recent genetic evidence, which suggests that the population of eastern North Pacific harbor porpoise is more finely structured (Chivers et al. 2002, 2007), stock boundaries on the Oregon/Washington coast have been revised, resulting in three stocks in Oregon/Washington waters: a Northern California/Southern Oregon stock (Point Arena, CA, to Lincoln City, OR), a Northern Oregon/Washington Coast stock (Lincoln City, OR, to Cape Flattery, WA), and the Washington Inland stock.
Waters stock (in waters east of Cape Flattery). Additional analyses are needed to determine whether to adjust the stock boundaries for harbor porpoise in Washington inland waters (Chivers et al. 2007).

In their assessment of California harbor porpoise, Barlow and Hanan (1995) recommended two stocks be recognized in California, with the stock boundary at the Russian River. Based on recent genetic findings (Chivers et al. 2002, 2007), California coast stocks were re-evaluated and significant genetic differences were found among four identified sampling sites. Revised stock boundaries, based on these genetic data and density discontinuities identified from aerial surveys, resulted in six California/Oregon/Washington stocks where previously there had been four (e.g., Carretta et al. 2001): 1) the Washington Inland Waters stock, 2) the Northern Oregon/Washington Coast stock, 3) the Northern California/Southern Oregon stock, 4) the San Francisco-Russian River stock, 5) the Monterey Bay stock, and 6) the Morro Bay stock. The stock boundaries for animals that occur in northern Oregon/Washington waters are shown in Figure 1. This report considers only the Northern Oregon/Washington Coast stock. Stock assessment reports for Washington Inland Waters, Northern California/Southern Oregon, San Francisco-Russian River, Monterey Bay, and Morro Bay harbor porpoise also appear in this volume. Stock assessment reports for the three harbor porpoise stocks in the inland and coastal waters of Alaska, including 1) the Southeast Alaska stock, 2) the Gulf of Alaska stock, and 3) the Bering Sea stock, are reported separately in the Stock Assessment Reports for the Alaska Region. The harbor porpoise occurring in British Columbia have not been included in any of the U.S. stock assessment reports.

POPULATION SIZE

In August and September 2002, an aerial survey of Oregon, Washington, and southern British Columbia coastal waters, from shore to 200 m depth, resulted in an uncorrected abundance estimate of 4,583 (CV=0.145) harbor porpoise in U.S. waters between Lincoln City, Oregon, and Cape Flattery, Washington (J. Laake, unpublished data). Using a correction factor of 3.42 (1/g(0); g(0)=0.292, CV=0.366) (Laake et al. 1997a), to adjust for groups missed by aerial observers, the corrected estimate of abundance for harbor porpoise in the coastal waters of northern Oregon (north of Lincoln City) and Washington in 2002 is 15,674 (CV=0.394). However, because the most recent abundance estimate is >8 years old, there is no current estimate of abundance available for this stock.

Minimum Population Estimate

No current information on abundance is available to obtain a minimum population estimate for the Northern Oregon/Washington Coast stock of harbor porpoise.

Current Population Trend

There are no reliable data on population trends of harbor porpoise for coastal Oregon, Washington, or British Columbia waters; however, the uncorrected estimates of abundance for the Northern Oregon/Washington Coast stock in 1997 (6,406; SE=826.5) and 2002 (4,583) were not significantly different (Z=-1.73, P=0.08), although the survey area in 1997 (Regions I-S through III) was slightly larger than in 2002 (Strata D-G) (Laake et al. 1998a; J. Laake, unpublished data).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

A reliable estimate of the maximum net productivity rate is not available for harbor porpoise. Therefore, until additional data become available, it is recommended that the cetacean maximum theoretical net productivity rate (R_MAX) of 4% (Wade and Angliss 1997) be employed for the Northern Oregon/Washington Coast harbor porpoise stock.

POTENTIAL BIOLOGICAL REMOVAL

Because there is no current estimate of minimum abundance, a potential biological removal (PBR) cannot be calculated for this stock.
HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fisheries Information

Within the EEZ boundaries of the coastal waters of northern Oregon and Washington, harbor porpoise deaths are known to occur in the northern Washington marine set gillnet tribal fishery. Total fishing effort in this fishery is conducted within the range of both harbor porpoise stocks (Northern Oregon/Washington Coast and Washington Inland Waters) occurring in Washington State waters (Gearin et al. 1994). Some movement of harbor porpoise between Washington’s coastal and inland waters is likely, but it is currently not possible to quantify the extent of such movements. For the purposes of this stock assessment report, the animals taken in waters south and west of Cape Flattery, WA, are assumed to have belonged to the Northern Oregon/Washington Coast stock, and Table 1 includes data only from that portion of the fishery. Fishing effort in the coastal marine set gillnet tribal fishery has declined since 2004. A test set gillnet fishery, with 100% observer coverage, was conducted in coastal waters in 2008. This test fishery required the use of nets equipped with acoustic alarms, and no harbor porpoise deaths were reported (Makah Fisheries Management, unpublished data). The mean estimated mortality for this fishery in 2005-2009 is 0 (CV=0) harbor porpoise per year from observer data.

Table 1. Summary of incidental mortality and serious injury of harbor porpoise (Northern Oregon/Washington Coast stock) in commercial and tribal fisheries that might take this species and calculation of the mean annual mortality rate; n/a indicates that data are not available. Mean annual takes are based on 2005-2009 data unless noted otherwise.

<table>
<thead>
<tr>
<th>Fishery name</th>
<th>Years</th>
<th>Data type</th>
<th>Percent observer coverage</th>
<th>Observed mortality</th>
<th>Estimated mortality</th>
<th>Mean annual takes (CV in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern WA marine set gillnet</td>
<td>2005, 2006,</td>
<td>observer data</td>
<td>no fishery</td>
<td>0</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>(tribal test fishery in coastal</td>
<td>2007, 2008,</td>
<td></td>
<td>no fishery</td>
<td>0</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>waters)</td>
<td>2009</td>
<td></td>
<td>100%</td>
<td>0</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>no fishery</td>
<td>0</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Grays Harbor/Chehalis River</td>
<td>2006</td>
<td>fisherman self-report</td>
<td></td>
<td>1</td>
<td>n/a</td>
<td>≥0.2 (n/a)</td>
</tr>
<tr>
<td>tribal steelhead gillnet fishery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown West Coast fisheries</td>
<td>2005-2009</td>
<td>stranding data</td>
<td>0, 0, 2, 2, 3</td>
<td>n/a</td>
<td></td>
<td>≥1.4 (n/a)</td>
</tr>
<tr>
<td>Minimum total annual takes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥1.6 (n/a)</td>
</tr>
</tbody>
</table>

This is a tribal fishery; therefore, it is not listed in the NMFS list of commercial fisheries.

In 1995-1997, data were collected for the coastal portions (areas 4 and 4A) of the northern Washington marine set gillnet fishery as part of an experiment, conducted in cooperation with the Makah Tribe, designed to explore the merits of using acoustic alarms to reduce bycatch of harbor porpoise in salmon gillnets. Results in 1995-1996 indicated that the nets equipped with acoustic alarms had significantly lower entanglement rates, as only 2 of the 49 deaths occurred in alarmed nets (Gearin et al. 1996, 2000; Laake et al. 1997b). In 1997, 96% of the sets were equipped with acoustic alarms and 13 deaths were observed (Gearin et al. 2000; P. Gearin, unpublished data). Harbor porpoise were displaced by an acoustic buffer around the alarmed nets, but it is unclear whether the porpoise or their prey were repelled by the alarms (Kraus et al. 1997, Laake et al. 1998b). However, the acoustic alarms did not appear to affect the target catch (chinook salmon and sturgeon) in the fishery (Gearin et al. 2000). For the past decade, Makah tribal regulations have required nets set in coastal waters (areas 4 and 4A) to be equipped with acoustic alarms.

A harbor porpoise death was reported in a Grays Harbor/Chehalis River tribal steelhead gillnet fishery in 2006 (NMFS, Northwest Regional Office, unpublished data), resulting in an average annual mortality of 0.2 harbor porpoise for this fishery.

According to Northwest Marine Mammal Stranding Network records, maintained by the NMFS Northwest Region (NMFS, Northwest Regional Office, unpublished data), there were seven fishery-related strandings of harbor porpoise from this stock reported on the northern Oregon/Washington coast in 2005-2009 (2 in 2007, 2 in 2008, and 3 in 2009), resulting in an average annual mortality of 1.4 harbor porpoise in 2005-2009. Evidence of fishery interactions included net marks, rope marks, and knife cuts. Since these deaths could not be attributed to a particular fishery, and were the only confirmed fishery-related deaths in this area in 2005-2009, they are listed in Table 1 as occurring in unknown West Coast fisheries. Six additional strandings reported in 2005-2009 (1 in 2006, 3 in 2007, and 2 in 2009) were considered possible fishery-related strandings but were not included in the estimate of average...
annual mortality. This estimate is considered a minimum because not all stranded animals are found, reported, or examined for cause of death (via necropsy by trained personnel).

Other Mortality

A significant increase in the number of harbor porpoise strandings reported throughout Oregon and Washington in 2006 prompted the Working Group on Marine Mammal Unusual Mortality Events to declare an Unusual Mortality Event (UME) on 3 November 2006 (Huggins 2008). A total of 114 harbor porpoise strandings were reported and confirmed throughout Oregon/Washington coast and Washington inland waters in 2006 and 2007 (Huggins 2008). The cause of the UME has not been determined, and several factors, including contaminants, genetics, and environmental conditions, are still being investigated. Cause of death, determined for 48 of 81 porpoise that were examined in detail, was attributed mainly to trauma and infectious disease. Suspected or confirmed fishery interactions were the primary cause of adult/subadult traumatic injuries, while birth-related trauma was responsible for the neonate deaths. Although six of the Northern Oregon/Washington Coast harbor porpoise deaths examined as part of the UME were suspected to have been caused by fishery interactions, only two could be confirmed as fishery-related deaths; these two deaths are listed in Table 1 as occurring in unknown West Coast fisheries in 2007.

STATUS OF STOCK

Harbor porpoise are not listed as “depleted” under the MMPA or listed as “threatened” or “endangered” under the Endangered Species Act. Based on currently available data, the total level of human-caused mortality and serious injury is 1.6 harbor porpoise per year. A PBR cannot be calculated for this stock because there is no current abundance estimate. The previous estimate of PBR was 114 (Carretta et al. 2009). Human-caused mortality relative to PBR is unknown, but it is considered to be small relative to the stock size. Therefore, the Northern Oregon/Washington Coast stock of harbor porpoise is not classified as “strategic.” The total fishery mortality and serious injury for this stock (based on recent observer data (0) and self-reported fisheries information (0.2) and stranding data (1.4) where observer data were not available or failed to detect harbor porpoise deaths) is 1.6 harbor porpoise per year. Since a PBR cannot be calculated for this stock, fishery mortality relative to PBR is unknown. The status of this stock relative to its Optimum Sustainable Population (OSP) level and population trends is unknown.

REFERENCES

Southwest Fisheries Science Center Administrative Report LJ-07-08. 14 pp. Available at SWFSC, NMFS, 3333 North Torrey Pines Road, La Jolla, CA 92037.

Gearin, P. J. National Marine Mammal Laboratory, AFSC, NMFS, 7600 Sand Point Way NE, Seattle, WA 98115.

Laake, J. L. National Marine Mammal Laboratory, AFSC, NMFS, 7600 Sand Point Way NE, Seattle, WA 98115.

Makah Fisheries Management, P.O. Box 115, Neah Bay, WA 98357.

National Marine Fisheries Service (NMFS), Northwest Regional Office, 7600 Sand Point Way NE, Seattle, WA 98115.

