SHORT-BEAKED COMMON DOLPHIN (*Delphinus delphis delphis*): Western North Atlantic Stock

**STOCK DEFINITION AND GEOGRAPHIC RANGE**

The common dolphin may be one of the most widely distributed species of cetaceans, as it is found worldwide in temperate and subtropical seas. In the North Atlantic, common dolphins are commonly found along the shoreline of Massachusetts in mass-stranding events (Bogomolni et al. 2010; Sharp et al. 2013), as well as found occurring over the continental shelf between the 100-2000-m isobaths and over prominent underwater topography and east to the mid-Atlantic Ridge (29°W) (Doksæther et al. 2008; Waring et al. 2008). The species is less common south of Cape Hatteras, although schools have been reported as far south as the Georgia/South Carolina border (32°N) (Jefferson et al. 2009). In waters off the northeastern USA coast, common dolphins are distributed along the continental shelf between the 100-2000-m isobaths and are associated with Gulf Stream features (CETAP 1982; Selzer and Payne 1988; Waring et al. 1992; Hamazaki 2002). They occur from Cape Hatteras northeast to Georges Bank (35° to 42°N) during mid-January to May (Hain et al. 1981; CETAP 1982; Payne et al. 1984). Common dolphins move onto Georges Bank, Gulf of Maine, and the Scotian Shelf from mid-summer to autumn. Selzer and Payne (1988) reported very large aggregations (greater than 3,000 animals) on Georges Bank in autumn. Common dolphins were occasionally found in the Gulf of Maine (Selzer and Payne 1988), more often in the last few years (Figure 1). Migration onto the Scotian Shelf and continental shelf off Newfoundland occurs during summer and autumn when water temperatures exceed 11°C (Sergeant et al. 1970; Gowans and Whitehead 1995).

Westgate (2005) tested the proposed one-population-stock model using a molecular analysis of mitochondrial DNA (mtDNA), as well as a morphometric analysis of cranial specimens. Both genetic analysis and skull morphometrics failed to provide evidence (p>0.05) of more than a single population in the western North Atlantic, supporting the proposed one-stock model. However, when western and eastern North Atlantic common dolphin mtDNA and skull morphology were compared, both the cranial and mtDNA results showed evidence of restricted gene flow (p<0.05) indicating that these two areas are not panmictic. Cranial specimens from the two sides of the North Atlantic differed primarily in elements associated with the rostrum. These results suggest that common dolphins in the western North Atlantic are composed of a single panmictic group whereas gene flow between the western and eastern North Atlantic is limited (Westgate 2005; 2007).

There is a peak in parturition during July and August with an average birth day of 28 July. Gestation lasts about 11.7 months and lactation lasts at least a year. Given these results western North Atlantic female common dolphins are likely on a 2-3 year calving interval. Females become sexually mature earlier (8.3 years and 200 cm) than males (9.5 years and 215 cm) as males continue to increase in size and mass. There is significant sexual dimorphism present with males being on average about 9% larger in body length (Westgate 2005; Westgate and Read 2007).
POPULATION SIZE

Several abundance estimates are available for common dolphins from selected regions for selected time periods. The current best abundance estimate for common dolphins off the U.S. or Canadian Atlantic coast is 173,486 (CV=0.55). This is the estimate derived from the Canadian Trans-North Atlantic Sighting Survey (TNASS) in July–August 2007 and is considered best because it covered more of the common dolphin range than the other surveys.

An abundance estimate of 84,000 (CV=0.36) common dolphins was obtained from an aerial survey conducted in August 2006, which covered 10,676 km of trackline in the region from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka pers. comm.).

An abundance estimate of 173,486 (CV=0.55) common dolphins was generated from the TNASS in July–August 2007 (Lawson and Gosselin 2009). This aerial survey covered waters from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. The abundance estimates from this survey have been corrected for perception and availability bias, when possible. In general this involved correcting for perception bias using mark-recapture distance sampling (MRDS), and correcting for availability bias using dive/surface times, as reported in the literature, and the Laake (1997) analysis method (Lawson and Gosselin in 2011).

An abundance estimate of 67,191 (CV=0.29) common dolphins was generated from a shipboard and aerial survey conducted during June–August 2011 (Palka 2012). The aerial portion that contributed to the estimate covered 5,313 km of tracklines that were over waters north of New Jersey from the coastline to the 100-m depth contour through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portion covered 3,107 km of tracklines between central Virginia and Massachusetts in waters deeper than the 100-m depth contour out to beyond the U.S. EEZ. Both sighting platforms used a double-platform data collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers, 2004). Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the MRDS option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

An abundance estimate of 2,993 (CV=0.87) common dolphins was generated from a shipboard survey conducted concurrently (June–August 2011) in waters between central Virginia and central Florida. This shipboard survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed a double-platform visual team procedure searching with 25x bigeye binoculars. A total of 4,445 km of tracklines was surveyed, yielding 290 cetacean sightings. The majority of sightings occurred along the continental shelf break with generally lower sighting rates over the continental slope. Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

Please see appendix IV for a summary of abundance estimates, including earlier estimates and survey descriptions. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable and should not be used for PBR determinations.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>84,000</td>
<td>0.36</td>
</tr>
<tr>
<td>July-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>173,486</td>
<td>0.55</td>
</tr>
<tr>
<td>Jul-Aug 2011</td>
<td>Central Virginia to lower Bay of Fundy</td>
<td>67,191</td>
<td>0.29</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>Central Florida to Central Virginia</td>
<td>2,993</td>
<td>0.87</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>Central Florida to lower Bay of Fundy (COMBINED)</td>
<td>70,184</td>
<td>0.28</td>
</tr>
</tbody>
</table>
**Minimum Population Estimate**

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for common dolphins is 173,486 animals (CV=0.55) derived from the 2007 TNASS survey. The minimum population estimate for the western North Atlantic common dolphin is 112,531.

**Current Population Trend**

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV > 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor et al. 2007).

**CURRENT AND MAXIMUM NET PRODUCTIVITY RATES**

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

**POTENTIAL BIOLOGICAL REMOVAL**

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 112,531 animals. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor is 0.5, the default value for stocks of unknown status relative to optimum sustainable population (OSP), and because the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic stock of common dolphin is 1,125.

**ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY**

Total annual estimated average fishery-related mortality or serious injury to this stock during 2008–2012 was 289 (CV=0.12) common dolphins.

**New Serious Injury Guidelines**

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998; Andersen et al. 2008; NOAA 2012). NMFS defines serious injury as an “injury that is more likely than not to result in mortality”. Injury determinations for stock assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year period for which data are available.

**Fishery information**

Detailed fishery information is reported in Appendix III.

**Earlier Interactions**

For more details on the historical fishery interactions prior to 1999 see Waring et al. (2007).

In the Atlantic pelagic longline fishery between 1990 and 2008, 20 common dolphins were observed hooked and released alive.

The estimated fishery-related mortality of common dolphins attributable to the *Loligo* squid portion of the Southern New England/mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries was 0 between 1997-1998 and 49 in 1999 (CV=0.97). After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

In the Atlantic mackerel portion of the Southern New England/mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries, the estimated fishery-related mortality was 161 (CV=0.49) animals in 1997 and 0 in 1998 and 1999. However, the estimates in both the mackerel and *Loligo* fisheries should be viewed with caution due to the extremely low (<1%) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl and mid-Atlantic mid-water trawl fisheries.

There was one observed take in the Southern New England/mid-Atlantic Bottom Trawl fishery reported in...
The estimated fishery-related mortality for common dolphins attributable to this fishery was 93 (CV=1.06) in 1997 and 0 in 1998 and 1999. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

There was one observed take in the mid-Atlantic mid-water trawl fishery in 2007. The resultant estimated annual fishery-related mortality and serious injury was 3.2 (CV = 0.70) for this fishery in 2007. There have been no observed common dolphin takes in the mid-Atlantic midwater trawl fishery in the past 5 years.

**Northeast Sink Gillnet**

In 1990, an observer program was started by NMFS to investigate marine mammal takes in the Northeast sink gillnet fishery (Appendix III). Bycatch in the northern Gulf of Maine occurs primarily from June to September, while in the southern Gulf of Maine, bycatch occurs from January to May and September to December. Two common dolphins were observed taken in northeast sink gillnet fisheries in 2008, 3 in 2009, 4 in 2010, 6 in 2011 and 6 in 2012. The estimated annual fishery-related mortality and serious injury attributable to the northeast sink gillnet fishery (CV in parentheses) was 34 (0.77) in 2008, 43 (0.77) in 2009, 69 (0.81) in 2010, 49 (0.71) in 2011 and 95 (0.40) in 2012 (Table 2; Orphanides 2013; Hatch and Orphanides 2014). The 2008–2012 average annual mortality attributed to the northeast sink gillnet was 56 animals (CV=0.29).

A study of the effects of two different hanging ratios in the bottom-set monkfish gillnet fishery on the bycatch of cetaceans and pinnipeds was conducted by NEFSC in 2009 and 2010 with 100% observer coverage. Commercial fishing vessels from Massachusetts and New Jersey were used for the study, which took place south of the Harbor Porpoise Take Reduction Team Cape Cod South Management Area (south of 40° 40’N) in February–April. Researchers purposely picked an area of historically high bycatch rates in order to have a chance of finding a significant difference. Eight research strings of fourteen nets each were fished and 159 hauls were completed during the course of the 2009–2010 study. Results showed that while a 0.33 mesh performed better at catching commercially important finfish than a 0.50 mesh, there was no statistical difference in cetacean or pinniped bycatch rates between the two hanging ratios. One common dolphin was caught in this study south of New England in 72 hauls during 2009 and one animal was caught in 72 hauls during the 2010 experiment in the mid-Atlantic (A.I.S., Inc. 2010). These 2 takes are included in the observed interactions and added to the total estimates in Table 2, though these animals and the fishing effort from this experiment were not included in the estimation of the bycatch rate that was expanded to the rest of the fishing effort.

**Mid-Atlantic Gillnet**

While no common dolphins were taken in observed trips during 2008–2009, 10 were taken in 2010, 3 in 2011, and 1 in 2012. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 0 in 2008–2009, 30 (0.48) in 2010, 29 (0.53) in 2011 and 15 (0.93) in 2012. Average annual estimated fishery-related mortality attributable to this fishery during 2008–2012 was 15 (CV=0.34) common dolphins (Table 2; Orphanides 2013, Hatch and Orphanides 2014). A study of the effects of tie-downs and bycatch rates of Atlantic Sturgeon (*Acipenser oxyrinchus oxyrinchus*) in both control and experimental gillnet gear operating in Statistical Area 612 (off NY and NJ) between 14 November 2010 and 18 December 2010 had 100% observer coverage. This experimental fishery captured 6 common dolphins and 3 unidentified dolphins, (unidentified due to lack of photos) during this time period (Fox et al. 2011). These 6 takes are included in the observed interactions and added to the total estimates, though these interactions and their associated fishing effort were not included in the estimation of the bycatch rate calculations that was expanded to the rest of the fishery (Table 2).

**Northeast Bottom Trawl**

This fishery is active in New England waters in all seasons. Revised serious injury guidelines were applied for this period (Waring et al. 2014, 2015). Common dolphin mortalities (and serious injuries in parentheses) observed by both at-sea monitors and traditional fisheries observers in this fishery were 1 (0) in 2008, 5 (0) in 2009, 29 (2) in 2010, 22 (0) in 2011, and 10 (0) in 2012 (Table 2). Fishery related bycatch rates for years 2008-2012 were estimated using an annual stratified ratio-estimator. These mortality estimates replace the 2008-2011 annual estimates reported in the 2013 stock assessment report that were generated using a different method. The estimated annual fishery-related mortality and serious injury attributable to the northeast bottom trawl fishery (CV in parentheses) was 6 (0.99) in 2008, 24 (0.60) in 2009, 114 (0.32) in 2010, 72 (0.37) in 2011, and 40 (0.54) in 2012. The 2008–2012 average annual mortality attributed to the northeast bottom trawl was 55 animals (CV=0.21).

**Mid-Atlantic Bottom Trawl**

Revised serious injury guidelines were applied for this period (Waring et al. 2014, 2015). Common dolphin

128
mortalities (and serious injuries in parentheses) observed in this fishery were, 1 (0) in 2008, 12 (0) in 2009, 2 (0) in 2010, 29 (1) in 2011, and 32 (1) in 2012 (Table 2). Fishery related bycatch rates for years 2008-2012 were estimated using an annual stratified ratio-estimator. These mortality estimates replace the 2008-2011 annual estimates reported in the 2013 stock assessment report that were generated using a different method. The estimated annual fishery-related mortality and serious injury attributable to the mid-Atlantic bottom trawl fishery (CV in parentheses) was 23 (1.0) in 2008, 167 (0.46) in 2009, 21 (0.96) in 2010, 271 (0.25) in 2011, and 323 (0.26) in 2012. The 2008–2012 average annual mortality attributed to the mid-Atlantic bottom trawl was 161 animals (CV=0.17).

Northeast Mid-water Trawl Fishery (Including Pair Trawl)
A short-beaked common dolphin mortality was observed in this fishery in 2010, and another in 2012 (Table 2). An expanded bycatch estimate has not been calculated so the minimum raw count is reported.

Pelagic Longline
In 2009, a common dolphin mortality was observed in the pelagic longline fishery, mid-Atlantic Bight fishing area (Garrison and Stokes 2010). The expanded estimate (CV in parentheses) for common dolphin bycatch attributed to this fishery was 8.5 (1.0) for 2009. The 2008–2012 average annual mortality was 1.7 (1.0).

Table 2. Summary of the incidental mortality of short-beaked common dolphins (Delphinus delphis delphis) by commercial fishery including the years sampled, the type of data used, the annual observer coverage, the serious injuries and mortalities recorded by on-board observers, the estimated annual serious injury and mortality, the combined serious injury and mortality estimate, the estimated CV of the annual combined serious injury and mortality and the mean annual serious injury and mortality estimate (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery a</th>
<th>Years</th>
<th>Data Type b</th>
<th>Observer Coverage</th>
<th>Observed Serious Injury f</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Combined Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink Gillnet c</td>
<td>08-12</td>
<td>Obs. Data, Trip Logbook, Allocated Dealer Data</td>
<td>.05, .04, .17, .19, .15</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 3, 4, 6, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>34, 43, 69, 49, 95</td>
<td>34, 43, 69, 49, 95</td>
<td>.77, .77, .81, .71, .40</td>
<td>56 (.29)</td>
</tr>
<tr>
<td>Mid-Atlantic Gillnet c</td>
<td>08-12</td>
<td>Obs. Data, Trip Logbook, Allocated Dealer Data</td>
<td>.03, .03, .04, .02, .02</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 30, 29, 15</td>
<td>0, 0, 30, 29, 15</td>
<td>0, 0, .48, .53, .93</td>
<td>15 (.34)</td>
</tr>
<tr>
<td>Northeast Mid-water Trawl - Including Pair Trawl</td>
<td>08-12</td>
<td>Obs. Data Trip Logbook</td>
<td>.199,.42,.54,.41,.45</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 1, 0, 1</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, na, 0, 0, 0</td>
<td>0, 0, 1, 0, 1</td>
<td>0, 0, .1, 0, 1</td>
<td>0.4</td>
</tr>
<tr>
<td>Northeast Bottom Trawl</td>
<td>08-12</td>
<td>Obs. Data Trip Logbook</td>
<td>.08, .09, .16, .26, .17</td>
<td>0, 0, 2, 0, 0</td>
<td>1, 5, 29, 22, 10</td>
<td>0, 1, 3, 2, 0</td>
<td>6, 23, 111, 70, 40</td>
<td>6, 24, 114, 72, 40</td>
<td>.99, .60, .32, .37, .54</td>
<td>55 (.21)</td>
</tr>
<tr>
<td>Mid-Atlantic Bottom Trawl</td>
<td>08-12</td>
<td>Obs. Data Trip Logbook</td>
<td>.03, .05, .06, .08, .05</td>
<td>0, 0, 0, 0, 0</td>
<td>1, 12, 2, 29, 32</td>
<td>1, 5, 1, 8, 7</td>
<td>22, 162, 20, 263, 316</td>
<td>23, 167, 21, 271, 323</td>
<td>1.0, .46, .96, .25, .26</td>
<td>161 (.17)</td>
</tr>
</tbody>
</table>
The fisheries listed in Table 2 reflect new definitions defined by the proposed List of Fisheries for 2005 (FR Vol. 69, No. 231, 2004). The ‘North Atlantic bottom trawl’ fishery is now referred to as the ‘Northeast bottom trawl.’ The Illex, Loligo and Mackerel fisheries are now part of the ‘mid-Atlantic bottom trawl’ and ‘mid-Atlantic midwater trawl’ fisheries.

Observer data (Obs. Data), used to measure bycatch rates, are collected within the Northeast Fisheries Observer Program. NEFSC collects landings data (unallocated Dealer Data or Allocated Dealer Data) which are used as a measure of total landings and mandatory Vessel Trip Reports (VTR) (Trip Logbook) are used to determine the spatial distribution of landings and fishing effort.

The observer coverages for the Northeast sink gillnet fishery are ratios based on tons of fish landed. Northeast bottom trawl, mid-Atlantic bottom trawl, Northeast mid-water and mid-Atlantic mid-water trawl fishery coverages are ratios based on trips. Total observer coverage reported for bottom trawl gear and gillnet gear in the year 2010 includes only samples collected from traditional fisheries observer, but not the fishery monitors. Monitor trips were incorporated for 2011, the first full year of monitor coverage.

Serious injuries were evaluated using new guidelines and include both at-sea monitor and traditional observer data (Waring et al. 2014, 2015).

**CANADA**

Between January 1993 and December 1994, 36 Spanish deep water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Banks) (Lens 1997). A total of 47 incidental catches were recorded, which included one common dolphin. The incidental mortality rate for common dolphins was 0.007/set. One common dolphin was reported as a bycatch mortality in Canadian bottom otter trawl fishing on Georges Bank in 2012 (pers. comm. Marine Animal Response Society, Nova Scotia).

**Other Mortality**

Two common dolphins were reported as incidental mortalities in NEFSC Atlantic herring monitoring activities in 2004. In 2007, one common dolphin was reported taken in a NEFSC spring bottom trawl survey.

From 2008 to 2012, 645 common dolphins were reported stranded between Maine and Florida (Table 3). The total includes mass stranded common dolphins in Massachusetts during 2008 (one event of 5 animals and one of 2 animals), 2009 (a total of 26 in 6 events), 2010 (a total of 30 in 8 events), 2011 (a total of 30 animals in 5 events), and 2012 (23 group stranding events) and one mass stranding in North Carolina in 2011 (4 animals). Two animals in 2008, 5 animals in 2009, 11 animals in 2010, 15 animals in 2011, and 71 animals in 2012 were released or last sighted alive. In 2008, seven common dolphins had indications of human interactions, four which were fishery interactions. In 2009, six common dolphins had indications of human interaction, 3 of which were classified as fishery interactions. In 2010, 7 animals were classified as human interactions, 2 of which were fishery interactions (all Massachusetts mass-stranded animals) and 2 of which (Rhode Island) involved animals last sighted free-swimming. In 2011, 3 animals were classified as having human interactions, 2 of which were fishery interactions (one of these was satellite-tagged and released). Twelve human interaction cases were reported in 2012 (7 in Massachusetts, 3 in New York and 2 in New Jersey), 6 of which (2 in Massachusetts, 2 in New York and 1 in New Jersey) were classified as fisheries interactions. An Unusual Mortality Event (UME) was declared in 2008 due to a relatively high number of strandings between January and April 2008, from New Jersey to North Carolina. Twenty-seven common dolphins were involved in this event (http://www.nmfs.noaa.gov/pr/health/mmume/midatlantic2008.htm accessed 19 April 2011). In Bogomolni’s 2010 analysis of mortality causes of stranded marine mammals on Cape Cod and southeastern Massachusetts between 2000 and 2006, 61% of stranded common dolphins were involved in mass-stranding events, and 37% of all the common dolphin stranding mortalities were disease related (Bogomolni 2010).

Four common dolphin strandings (6 individuals) were reported on Sable Island, Nova Scotia from 1996 to 1998 (Lucas and Hooker 1997; 2000). The Marine Animal Response Society of Nova Scotia reported one common
dolphin stranded in 2008, one in 2009, one (released alive) in 2010, and 2 (one a fisheries interaction) in 2011
(Tonya Wimmer, pers. comm.).

Table 3. Short-beaked common dolphin (Delphinus delphis delphis) reported strandings along the U.S. Atlantic
coast, 2008-2012 (Data from the NOAA Marine Mammal Health and Stranding Response Program. 2012 records

<table>
<thead>
<tr>
<th>STATE</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Massachusettsa</td>
<td>19</td>
<td>53</td>
<td>71</td>
<td>64</td>
<td>221</td>
<td>428</td>
</tr>
<tr>
<td>Rhode Islandc</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Connecticut</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>New Yorkb,c</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>17</td>
<td>13</td>
<td>48</td>
</tr>
<tr>
<td>New Jerseyc</td>
<td>9</td>
<td>6</td>
<td>14</td>
<td>9</td>
<td>14</td>
<td>52</td>
</tr>
<tr>
<td>Delawarec</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Maryland</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Virginiac</td>
<td>20</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>North Carolinaa,c</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>18</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>TOTALS</td>
<td>58</td>
<td>87</td>
<td>114</td>
<td>124</td>
<td>262</td>
<td>645</td>
</tr>
</tbody>
</table>

a. Massachusetts mass strandings (2008 - 5; 2009 - 2,3,3,4,6,8, 2010 - 2,2,3,3,3,4,5,8; 2011-3,3,4,7,13;
2012-23 group events ranging from 2 to 22 animals each). North Carolina mass stranding of 4 animals in 2011.

b. Twenty (12 dead, 8 rescued; one of the mortalities classified as human interaction) animals involved in a
mass stranding in Suffolk county in 2007. Seven animals involved in 2 mass stranding events in March 2009 (six
euthanized, 1 died at site, 2 had signs of fishery interaction). In addition, in 2008 3 animals were relocated from the
Nansemond River. Three animals (one released alive) involved in mass stranding in NJ in 2012.

c. Seven records with signs of human interaction in 2008-3 from Virginia, 1 from Massachusetts, one from
North Carolina, and one from Delaware. Of these, 4 were fishery interactions. Six human interaction cases in 2009
(2 Massachusetts, 3 Rhode Island, 1 New York), 3 of which were classified as fishery interactions (2 in Rhode
Island and one in Massachusetts). Seven HI cases in 2010 (4 mortalities in MA, 2 released alive in RI, and 1
mortality in New Jersey), 2 of which (Massachusetts) were classified as fishery interactions. Three HI cases in
2011, all in Massachusetts, 2 of which were classified as fishery interactions (but one of those fishery interaction
animals was released alive). Twelve HI cases in 2012 (7 in Massachusetts, 3 in New York and 2 in New Jersey), 6 of
which (2 in Massachusetts, 2 in New York and 1 in New Jersey) were classified as fisheries interactions.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of
the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore
necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among
stranding network personnel varies widely as does the ability to recognize signs of fishery interaction. However a
recently published human interaction manual (Barco and Moore 2013) and case criteria for human interaction
(Moore at al. 2013) should help with this.

STATUS OF STOCK
Short-beaked common dolphins are not listed as threatened or endangered under the Endangered Species Act,
and the Western North Atlantic stock is not considered strategic under the Marine Mammal Protection Act. The
2008–2012 average annual human-related mortality does not exceed PBR. The total U.S. fishery-related mortality
and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to
be insignificant and approaching zero mortality and serious injury rate. The status of short-beaked common dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. Population trends for this species have not been investigated.

REFERENCES CITED


