WHITE-BEAKEN DOLPHIN (Lagenorhynchus albirostris): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The dolphin genus *Lagenorhynchus* is currently proposed to be revised (Vollmer et al. 2019); though until the revision is officially accepted, the previous definitions will be used. White-beaked dolphins are the more northerly of the two species of *Lagenorhynchus* in the northwest Atlantic (Leatherwood et al. 1976). The species is found in waters from southern New England to southern Greenland and Davis Straits (Leatherwood et al. 1976; CETAP 1982), across the Atlantic to the Barents Sea and south to at least Portugal (Reeves et al. 1999). Differences in skull features indicate that there are at least two separate stocks, one in the eastern and one in the western North Atlantic (Mikkelsen and Lund 1994). No genetic analyses have been conducted to corroborate this stock structure.

In waters off the northeastern U.S. coast, white-beaked dolphin sightings are concentrated in the western Gulf of Maine and around Cape Cod (CETAP 1982). The limited distribution of this species in U.S. waters has been attributed to opportunistic feeding (CETAP 1982). Prior to the 1970's, white-sided dolphins (*L. acutus*) in U.S. waters were found primarily offshore on the continental slope, while white-beaked dolphins were found on the continental shelf. During the 1970's, there was an apparent switch in habitat use between these two species. This shift may have been a result of the increase in sand lance in the continental shelf waters (Katona et al. 1993; Kenney et al. 1996).

POPULATION SIZE

The best abundance estimate for the western North Atlantic white-beaked dolphin is 536,016 (CV=0.31), an estimate derived from aerial survey data collected in during the Canadian Northwest Atlantic International Sightings Survey (NAISS) survey in the summer of 2016.

As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable and should not be used for PBR determinations.

Recent surveys and abundance estimates

An abundance estimate of 530,538 (CV=0.39; Table 1) white-beaked dolphins in Atlantic Canadian waters was generated from an aerial survey conducted by the Department of Fisheries and Oceans, Canada (DFO). This survey covered Atlantic Canadian shelf and shelf break waters extending from the northern tip of Labrador to the U.S border off southern Nova Scotia in August and September of 2016 (Lawson and Gosselin 2018). A total of 29,123 km were flown over the Gulf of St. Lawrence/Bay of Fundy/Scotian Shelf strata using two Cessna Skymaster 337s and 21,037 km were flown over the Newfound/Labrador strata using a DeHavilland Twin Otter. The estimate was derived from the Skymaster data using single team multi-covariate distance sampling with left truncation (to accommodate the
obscured area under the plane) where size-bias was also investigated. The Otter-based perception bias correction, which used double platform mark-recapture methods, was applied to all platform estimates. An availability bias correction factor, which was based on published records of the cetaceans’ surface intervals, was also applied.

No white-beaked dolphins were seen on the summer 2016 U.S. surveys.

Table 1. Summary of abundance estimates for western North Atlantic white-beaked dolphins. Month, year, and area covered during each abundance survey, and resulting abundance estimate (Nbest) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>Nbest</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug–Sep 2016</td>
<td>Bay of Fundy/Scotian Shelf</td>
<td>5,478</td>
<td>0.495</td>
</tr>
<tr>
<td>Aug–Sep 2016</td>
<td>Newfoundland/Labrador</td>
<td>530,538</td>
<td>0.314</td>
</tr>
<tr>
<td>Aug–Sep 2016</td>
<td>Canadian Atlantic waters (COMBINED)</td>
<td>536,016</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for the western North Atlantic stock of white-beaked dolphins is 536,016 (CV=0.31). The minimum population estimate for these white-beaked dolphins is 415,344.

Current Population Trend

There are insufficient data to determine population trends for this species. The change in abundance estimates between the DFO 2007 and 2016 aerial surveys in Canadian waters could not have resulted from reproduction alone so immigration from other areas of the north Atlantic likely occurred.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (Wade and Angliss 1997). The minimum population size of white-beaked dolphins is 415,344. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic white-beaked dolphin is 4,153.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There are no documented reports of fishery-related mortality or serious injury to this stock in the U.S. EEZ.

Fishery Information

Because of the absence of observed fishery-related mortality and serious injury to this stock in the U.S. and Canadian waters, no fishery information is provided.

Other Mortality

Recent white-beaked dolphin strandings on the U.S. Atlantic coast are documented in Table 2 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 23 October 2018). Human interaction was indicated in 2 records during this period, one due to plastic ingestion as well as buckshot found in the
blubber (healed) and one due to post-mortem carcass handling. Neither of these were classified as fishery interactions.

<table>
<thead>
<tr>
<th>Area</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>North Carolinaa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL US</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Nova Scotiab</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Newfoundland/Labradorc</td>
<td>0</td>
<td>68</td>
<td>6</td>
<td>0</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

a. North Carolina stranding was a new southerly record for this species (Thayer et al. 2018).


HABITAT ISSUES

The chronic impacts of contaminants (polychlorinated biphenyls [PCBs] and chlorinated pesticides [DDT, DDE, dieldrin, etc.]) on marine mammal reproduction and health are of concern (e.g., Jepson et al. 2016; Hall et al. 2018), but research on contaminant levels for the western north Atlantic stock of white-beaked dolphins is lacking.

Climate-related changes in spatial distribution and abundance, including poleward and depth shifts, have been documented in or predicted for plankton species and commercially important fish stocks (Nye et al. 2009; Pinsky et al. 2013; Poloczanska et al. 2013; ; Hare et al. 2016; Grieve et al. 2017; Morley et al. 2018) and cetacean species (e.g., MacLeod 2009; Sousa et al. 2019). There is uncertainty in how, if at all, the distribution and population size of this species will respond to these changes and how the ecological shifts will affect human impacts to the species.

STATUS OF STOCK

The status of white-beaked dolphins, relative to OSP, in U.S. Atlantic coast waters is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this species. The total documented U.S. fishery-related mortality and serious injury for this stock (0) is less than 10% of the calculated PBR (4.153) and, therefore, is considered to be insignificant and at zero mortality and serious injury rate. This is a non-strategic stock because the 2013-2017 estimated average annual human related mortality does not exceed PBR.

REFERENCES CITED


2016. A vulnerability assessment of fish and invertebrates to climate change on the Northeast U.S. continental

Head, E.J.H. and P. Pepin. 2010. Spatial and inter-decadal variability in plankton abundance and composition in the

https://doi.org/10.1371/journal.pone.0146756.s014

guide to whales, porpoises, and seals from Cape Cod to Newfoundland. Washington, D. C. Smithsonian
Institution Press. 316 pp.

Jepson, P.D., R. Deaville, J.L. Barber, A. Aguilar, A. Borrell, S. Murphy, J. Barry, A. Brownlow, J. Barnett, S. Berrow
and A.A. Cunningham. 2016. PCB pollution continues to impact populations of orcas and other dolphins in

Jaworski and T. Smada (eds.) The Northeast Shelf Ecosystem: Assessment, Sustainability, and Management.
Blackwell Science, Cambridge, MA 02142, USA.

Lawson J, and J-F. Gosselin 2018 Estimates of cetacean abundance from the 2016 NAISS aerial surveys of eastern
Canadian waters, with a comparison to estimates from the 2007 TNASS NAAMCO SC/25/AE/09, 40 pp.


MacLeod, C.D. 2009. Global climate change, range changes and potential implications for the conservation of marine

acutus (Mammalia: Cetacea) in metrical and non-metrical skull characters, with remarks on occurrence. J.
Zool., Lond. 234:289-299.


Nye, J., J. Link, J. Hare and W. Overholtz. 2009. Changing spatial distribution of fish stocks in relation to climate and

Science 341:1239–1242.

Poloczanska, E.S., C.J. Brown, W.J. Sydeman, W. Kiessling, D.S. Schoeman, P.J. Moore, K. Brander, J.F. Bruno,
L.B. Buckley, M.T. Burrows, C.M. Duarte, B.S. Halpern, J. Holding, C.V. Kappel, M.L. O'Connor, J.M.


Sousa, A., F. Alves, A. Dinis, J. Bentz, M.J. Cruz and J.P. Nunes. 2019. How vulnerable are cetaceans to climate

44:32–38.


from: https://repository.library.noaa.gov/view/noaa/15963