STRIPED DOLPHIN (Stenella coeruleoalba): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The striped dolphin, Stenella coeruleoalba, is distributed worldwide in warm-temperate to tropical seas (Archer and Perrin 1997; Archer 2002). Striped dolphins are found in the western North Atlantic from Nova Scotia south to at least Jamaica and in the Gulf of Mexico. In general, striped dolphins appear to prefer continental slope waters offshore to the Gulf Stream (Leatherwood et al. 1976; Perrin et al. 1994; Schmidly 1981). There is very little information concerning striped dolphin stock structure in the western North Atlantic (Archer and Perrin 1997).

In waters off the northeastern U.S. coast, striped dolphins are distributed along the continental shelf edge from Cape Hatteras to the southern margin of Georges Bank, and also occur offshore over the continental slope and rise in the mid-Atlantic region (CETAP 1982; Mullin and Fulling 2003). Continental shelf edge sightings in this program were generally centered along the 1,000 m depth contour in all seasons (CETAP 1982). During 1990 and 1991 cetacean habitat-use surveys, striped dolphins were associated with the Gulf Stream north wall and warm-core ring features (Waring et al. 1992). Striped dolphins seen in a survey of the New England Sea Mounts (Palka 1997) were in waters that were between 20˚ and 27˚C and deeper than 900 m.

Although striped dolphins are considered to be uncommon in Canadian Atlantic waters (Baird et al. 1997), summer sightings (2-125 individuals) in the deeper and warmer waters of the Gully (submarine canyon off eastern Nova Scotia shelf) suggest that this region may be an important part of their range (Gowans and Whitehead 1995; Baird et al. 1997). A July 2017 live stranding of a striped dolphin is the first stranding record of this species in Newfoundland and Labrador (Ledwell et al. 2018).

Figure 1: Distribution of striped dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006, 2007, 2010, 2011 and 2016. Isobaths are the 100-m, 200-m, 1000-m and 4000-m depth contours. Circle symbols represent shipboard sightings and squares are aerial sightings.

POPULATION SIZE

Several abundance estimates from selected regions are available for striped dolphins for select time periods. Sightings are almost exclusively in the continental shelf edge and continental slope areas west of Georges Bank (Figure 1). The best abundance estimate for striped dolphins is the sum of the 2016 survey estimates—67,036 (CV=0.29).

Earlier abundance estimates

Please see Appendix IV for a summary of abundance estimates, including earlier estimates and survey descriptions. As recommended in the GAMMS II Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable for the determination of the current PBR.

Recent surveys and abundance estimates

An abundance estimate of 46,882 (CV=0.33) striped dolphins was generated from a shipboard and aerial survey conducted during June–August 2011 (Palka 2012). The aerial portion that contributed to the abundance estimate
covered 5,313 km of tracklines that were over waters north of New Jersey from the coastline to the 100-m depth contour through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portion covered 3,107 km of tracklines that were in waters offshore of Virginia to Massachusetts (waters that were deeper than the 100-m depth contour out to beyond the U.S. EEZ). Both sighting platforms used adouble platform data collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers, 2004). Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling (MRDS) option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

An abundance estimate of 7,925 (CV=0.66) striped dolphins was generated from a shipboard survey conducted concurrently (June–August 2011) in waters between central Virginia and central Florida. This shipboard survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed two independent visual teams searching with 25× bigeye binoculars. A total of 4,445 km of tracklines were surveyed, yielding 290 cetacean sightings. The majority of sightings occurred along the continental shelf break with generally lower sighting rates over the continental slope. Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

Abundance estimates of 42,783(CV=0.25) and 24,163 (CV=0.66) striped dolphins were generated from vessel surveys conducted in U.S. waters of the western North Atlantic during the summer of 2016 (Table 1; Garrison in 2020; Palka 2020). One survey was conducted from 27 June to 25 August in waters north of 38°N latitude and consisted of 5,354 km of on-effort trackline along the shelf break and offshore to the outer limit of the U.S. EEZ (NEFSC and SEFSC 2018). The second vessel survey covered waters from Central Florida to approximately 38°N latitude between the 100-m isobaths and the outer limit of the U.S. EEZ during 30 June–19 August. A total of 4,399 km of trackline was covered on effort (NEFSC and SEFSC 2018). Both surveys utilized two visual teams and an independent observer approach to estimate detection probability on the trackline (Laake and Borchers 2004). Mark-recapture distance sampling was used to estimate abundance. Estimates from the two surveys were combined and CVs pooled to produce a species abundance estimate for the stock area.

Table 1. Summary of abundance estimates for western North Atlantic striped dolphins. Month, year, and area covered during each abundance survey, and resulting abundance estimate (Nbest) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>Nbest</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun–Aug 2011</td>
<td>Central Virginia to lower Bay of Fundy</td>
<td>46,882</td>
<td>0.33</td>
</tr>
<tr>
<td>Jun–Aug 2011</td>
<td>Central Florida to Central Virginia</td>
<td>7,925</td>
<td>0.66</td>
</tr>
<tr>
<td>Jun–Aug 2011</td>
<td>Central Florida to lower Bay of Fundy (COMBINED)</td>
<td>54,807</td>
<td>0.3</td>
</tr>
<tr>
<td>Jun–Sep 2016</td>
<td>Central Virginia to lower Bay of Fundy</td>
<td>42,783</td>
<td>0.25</td>
</tr>
<tr>
<td>Jun–Sep 2016</td>
<td>Florida to Central Virginia</td>
<td>24,163</td>
<td>0.66</td>
</tr>
<tr>
<td>Jun–Sep 2016</td>
<td>Florida to lower Bay of Fundy (COMBINED)</td>
<td>67,036</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for striped dolphins is 67,036 (CV=0.29), obtained from the 2016 surveys. The minimum population estimate for the western North Atlantic striped dolphin is 52,939.

Current Population Trend

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV > 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor et al. 2007). There is current work to standardize the strata-specific previous abundance estimates to consistently represent the same
regions and include appropriate corrections for perception and availability bias. These standardized abundance estimates will be used in state-space trend models that incorporate environmental factors that could potentially influence the process and observational errors for each stratum.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 52,939. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is 0.5 because this stock is of unknown status. PBR for the western North Atlantic striped dolphin is 529.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total annual estimated average fishery-related mortality to this stock during 2013-2017 was zero striped dolphins.

Fishery Information

Detailed fishery information is reported in Appendix III.

Earlier Interactions

See Appendix V for more information on historical takes.

Other Mortality

A total of 22 striped dolphins were reported stranded along the U.S. Atlantic coast between 2013 and 2017 (Table 3; NOAA National Marine Mammal Health and Stranding Response Database, accessed 23 October 2018). This includes one record of a mass stranding of 12 animals in North Carolina in 2005.

In eastern Canada, 17 strandings were reported between 2013 and 2017. As noted above, 2017 marked the first time a striped dolphin stranding was reported in Newfoundland and Labrador.


<table>
<thead>
<tr>
<th>Area</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusettsa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>New Yorkb</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>New Jersey</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Maryland</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>North Carolina</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Florida</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>U.S. TOTAL</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Nova Scotia/Prince Edward Islandc,d</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Newfoundland and New</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Brunswick²</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>17</td>
<td>39</td>
</tr>
</tbody>
</table>

a. 2015 animal was released alive.
b. 2013 animal classified as human interaction with signs of vessel strike. 2015 animal classified as a fishery interaction
c. Three of the 2017 animals released alive.
e. Ledwell et al. 2018.

HABITAT ISSUES

The chronic impacts of contaminants (polychlorinated biphenyls [PCBs] and chlorinated pesticides [DDT, DDE, dieldrin, etc.]) on marine mammal reproduction and health are of concern (e.g., Storelli and Macrotrigiano 2000; Pierce et al. 2008; Jepson et al. 2016; Hall et al. 2018; Murphy et al. 2018), but research on contaminant levels for the western north Atlantic stock of striped dolphins is lacking.

Climate-related changes in spatial distribution and abundance, including poleward and depth shifts, have been documented in or predicted for plankton species and commercially important fish stocks (Nye et al. 2009; Head et al. 2010; Pinsky et al. 2013; Poloczanska et al. 2013; Hare et al. 2016; Grieve et al. 2017; Morley et al. 2018) and cetacean species (e.g., MacLeod 2009; Sousa et al. 2019). There is uncertainty in how, if at all, the distribution and population size of this species will respond to these changes and how the ecological shifts will affect human impacts to the species.

STATUS OF STOCK

Striped dolphins are not listed as threatened or endangered under the Endangered Species Act, and the Western North Atlantic stock is not considered strategic under the Marine Mammal Protection Act. Average annual human-related mortality and serious injury does not exceed the PBR. The total U.S. fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR, therefore can be considered to be insignificant and approaching zero mortality and serious injury rate. The status of striped dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. There are insufficient data to determine the population trends for this species.

REFERENCES CITED


Garrison, L.P. 2020. Abundance of cetaceans along the southeast U.S. east coast from a summer 2016 vessel survey. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRD Contribution # PRD-2020-04, 17 pp.


