FIN WHALE (Balaenoptera physalus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The Scientific Committee of the International Whaling Commission (IWC) has proposed stock boundaries for North Atlantic fin whales. Fin whales off the eastern United States, Nova Scotia, and the southeastern coast of Newfoundland are believed to constitute a single stock under the present IWC scheme (Donovan 1991). Although the stock identity of North Atlantic fin whales has received much recent attention from the IWC, understanding of stock boundaries remains uncertain. The existence of a subpopulation structure was suggested by local depletions that resulted from commercial overharvesting (Mizroch et al. 1984).

A genetic study conducted by Bérubé et al. (1998) using both mitochondrial and nuclear DNA provided strong support for an earlier population model proposed by Kellogg (1929) and others. This postulates the existence of several subpopulations of fin whales in the North Atlantic and Mediterranean with limited gene flow among them. Bérubé et al. (1998) also proposed that the North Atlantic population showed recent divergence due to climatic changes (i.e., postglacial expansion), as well as substructuring over even relatively short distances. The genetic data are consistent with the idea that different subpopulations use the same feeding ground, a hypothesis that was also originally proposed by Kellogg (1929). More recent genetic studies have called into question conclusions drawn from early allozyme work (Olsen et al. 2014) and North Atlantic fin whales show a very low rate of genetic diversity throughout their range excluding the Mediterranean (Pampoulie et al. 2008).

Fin whales are common in waters of the U. S. Atlantic Exclusive Economic Zone (EEZ), principally from Cape Hatteras northward (Figure 1). In a recent globally-scaled review of sightings data, Edwards et al. (2015) found evidence to confirm the presence of fin whales in every season throughout much of the U.S. EEZ north of 35° N; however, densities vary seasonally. Fin whales accounted for 46% of the large whales and 24% of all cetaceans sighted over the continental shelf during aerial surveys (CETAP 1982) between Cape Hatteras and Nova Scotia during 1978–1982. While much remains unknown, the magnitude of the ecological role of the fin whale is impressive. In this region fin whales are the dominant large cetacean species during all seasons, having the largest standing stock, the largest food requirements, and therefore the largest influence on ecosystem processes of any cetacean species (Hain et al. 1992; Kenney et al. 1997). Acoustic detections of fin whale singers augment and confirm these visual sighting conclusions for males. Recordings from Massachusetts Bay, New York Bight, and deep-ocean areas detected some level of fin whale singing from September through June (Watkins et al. 1987, Clark and Gagnon 2002, Morano et al. 2012). These acoustic observations from both coastal and deep-ocean regions support the conclusion that male fin whales are broadly distributed throughout the western North Atlantic for most of the year.

New England waters represent a major feeding ground for fin whales. There is evidence of site fidelity by females,
and perhaps some segregation by sexual, maturational, or reproductive class in the feeding area (Agler et al. 1993). Hain et al. (1992) showed that fin whales measured photogrammetrically off the northeastern U.S., after omitting all individuals smaller than 14.6 m (the smallest whale taken in Iceland), were significantly smaller (mean length=16.8 m; P <0.001) than fin whales taken in Icelandic whaling (mean=18.3 m). Seipt et al. (1990) reported that 49% of identified fin whales sighted on the Massachusetts Bay area feeding grounds were resighted within the same year, and 45% were resighted in multiple years. The authors suggested that fin whales on these grounds exhibited patterns of seasonal occurrence and annual return that in some respects were similar to those shown for humpback whales. This was reinforced by Clapham and Seipt (1991), who showed maternally-directed site fidelity for fin whales in the Gulf of Maine. Despite the suggested similarity in patterns of seasonal occurrence with humpback whales, the U.S. currently recognizes one stock of fin whales in the western North Atlantic.

Hain et al. (1992), based on an analysis of neonate stranding data, suggested that calving takes place during October to January in latitudes of the U.S. mid-Atlantic region; however, it is unknown where calving, mating, and wintering occur for most of the population. Results from the Navy's SOSUS program (Clark 1995; Clark and Gagnon 2002) indicated a substantial deep-ocean distribution of fin whales. It is likely that fin whales occurring in the U.S. Atlantic EEZ undergo migrations into Canadian waters, open-ocean areas, and perhaps even subtropical or tropical regions (Edwards et al. 2015). However, the popular notion that entire fin whale populations make distinct annual migrations like some other mysticetes has questionable support in the data; in the North Pacific, year-round monitoring of fin whale calls found no evidence for large-scale migratory movements (Watkins et al. 2000).

POPULATION SIZE

The best abundance estimate available for the western North Atlantic fin whale stock is 7,418 (CV=0.25). This estimate is the sum of the 2016 NOAA shipboard and aerial surveys and the 2016 Canadian Northwest Atlantic International Sightings Survey (NAISS). Because the survey areas did not overlap, the estimates from the two surveys were added together and the CVs pooled using a delta method to produce a species abundance estimate for the stock area. The 2016 estimate is larger than those from 2011 because the 2016 estimate is derived from a survey area extending from Newfoundland to Florida, which is about 1,300,000 km² larger than the 2011 survey area. In addition, the 2016 survey estimates in U.S. waters were corrected for availability bias (due to diving behavior), whereas the 2011 estimates were not corrected.

Earlier abundance estimates

Please see Appendix IV for earlier abundance estimates. As recommended in the guidelines for preparing Stock Assessment Reports (NMFS 2016), estimates older than eight years are deemed unreliable for the determination of a current PBR.

Recent surveys and abundance estimates

An abundance estimate of 1,595 (CV=0.33) fin whales was generated from a shipboard and aerial survey conducted during June–August 2011 (Palka 2012). The aerial portion that contributed to the abundance estimate covered 5,313 km of tracklines that were over waters north of New Jersey from the coastline to the 100-m depth contour, through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portion covered 3,107 km of tracklines that were in waters offshore of North Carolina to Massachusetts (waters that were deeper than the 100-m depth contour out to beyond the outer limit of the U.S. EEZ). Both sighting platforms used a double-platform data collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers 2004). Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the multiple-covariate distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009). The abundance estimates of fin whales include a percentage of the estimate of animals identified as fin/sei whales (the two species being sometimes hard to distinguish). The percentage used is the ratio of positively identified fin whales to the total number of positively identified fin whales and positively identified sei whales; the CV of the abundance estimate includes the variance of the estimated fraction.

An abundance estimate of 23 (CV=0.87) fin whales was generated from a shipboard survey conducted concurrently (June–August 2011; Garrison 2016) in waters between central Virginia and central Florida. This shipboard survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed two independent visual teams searching with 25× bigeye binoculars. A total of 4,445 km of tracklines was surveyed. Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling
An abundance estimate of 3,006 (CV=0.61) fin whales was generated from vessel surveys conducted in U.S. waters of the western North Atlantic during the summer of 2016 (Table 1; Garrison 2020; Palka 2020). One survey was conducted from 27 June to 25 August in waters north of 38ºN latitude and consisted of 5,354 km of on-effort trackline along the shelf break and offshore to the outer limit of the U.S. EEZ (NEFSC and SEFSC 2018). The second vessel survey covered waters from Central Florida to approximately 38ºN latitude between the 100-m isobaths and the outer limit of the U.S. EEZ during 30 June–19 August. A total of 4,399 km of trackline was covered on effort (NEFSC and SEFSC 2018). Both surveys utilized two visual teams and an independent observer approach to estimate detection probability on the trackline (Laake and Borchers 2004). Mark-recapture distance sampling was used to estimate abundance.

The Department of Fisheries and Oceans, Canada (DFO) generated fin whale estimates from a large-scale aerial survey of Atlantic Canadian shelf and shelf break habitats extending from the northern tip of Labrador to the U.S. border off southern Nova Scotia in August and September of 2016 (Lawson and Gosselin 2018). A total of 29,123 km of effort was flown over the Gulf of St. Lawrence/Bay of Fundy/Scotian Shelf stratum and 21,037 over the Newfound/Labrador stratum. The Bay of Fundy/Scotian shelf portion of the fin whale population was estimated at 2,235 (CV=0.41) and the Newfoundland/Labrador portion at 2,177 (CV=0.47). The Newfoundland estimate was derived from the Twin Otter data using two-team mark-recapture multi-covariate distance sampling methods. The Gulf of St. Lawrence estimate was derived from the Skymaster data using single team multi-covariate distance sampling with left truncation (to accommodate the obscured area under the plane) where size-bias was also investigated, and the Otter-based perception bias correction was applied. An availability bias correction factor, which was based on the cetaceans’ surface intervals, was applied to both abundance estimates.

Table 1. Summary of recent abundance estimates for western North Atlantic fin whales with month, year, and area covered during each abundance survey, and resulting abundance estimate (Nbest) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>Nbest</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Aug 2011</td>
<td>Central Virginia to lower Bay of Fundy</td>
<td>1,595</td>
<td>0.33</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>Central Florida to Central Virginia</td>
<td>23</td>
<td>0.76</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>Central Florida to lower Bay of Fundy (COMBINED)</td>
<td>1,618</td>
<td>0.33</td>
</tr>
<tr>
<td>Jun–Sep 2016</td>
<td>Florida to lower Bay of Fundy</td>
<td>3,006</td>
<td>0.40</td>
</tr>
<tr>
<td>Aug–Sep 2016</td>
<td>Bay of Fundy/Scotian Shelf</td>
<td>2,235</td>
<td>0.413</td>
</tr>
<tr>
<td>Aug–Sep 2016</td>
<td>Newfoundland/Labrador</td>
<td>2,177</td>
<td>0.465</td>
</tr>
<tr>
<td>Jun–Sep 2016</td>
<td>Central Virginia to Newfoundland/Labrador (COMBINED)</td>
<td>7,418</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for fin whales is 7,418 (CV=0.25). The minimum population estimate for the western North Atlantic fin whale is 6,029.

Current Population Trend

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for this stock is poor due to the relatively imprecise abundance estimates and variable survey design. For example, the power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV > 0.30) remains below 80% (alpha=0.30) unless surveys are conducted on an annual basis (Taylor et al. 2007). There is current work to standardize the strata-specific previous abundance estimates to consistently represent
the same regions and include appropriate corrections for perception and availability bias. These standardized abundance estimates will be used in state-space trend models that incorporate environmental factors that could potentially influence the process and observational errors for each stratum.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Based on photographically identified fin whales, Agler et al. (1993) estimated that the gross annual reproduction rate was 8%, with a mean calving interval of 2.7 years.

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 6,029. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor is 0.10 because the fin whale is listed as endangered under the Endangered Species Act (ESA). PBR for the western North Atlantic fin whale is 12.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

For the period 2013 through 2017, the minimum annual rate of human-caused mortality and serious injury to fin whales was 2.35 per year. This value includes incidental fishery interaction records, 1.55 (0 U.S./ 0.95 unknown but first reported in U.S. waters/0.6 Canadian waters); and records of vessel collisions, 0.8 (all U.S.) (Table 2a; Henry et al. 2020). Annual rates calculated from detected mortalities should not be considered an unbiased representation of human-caused mortality, but they represent a definitive lower bound. Detections are haphazard and not the result of a designed sampling scheme. As such they represent a minimum estimate of human-caused mortality which is almost certainly biased low. The size of this bias is uncertain.

Fishery-Related Serious Injury and Mortality

U.S.

No confirmed fishery-related mortalities or serious injuries of fin whales have been reported in the NMFS Sea Sampling bycatch database. A review of the records of stranded, floating, or injured fin whales for the period 2013 through 2017 on file at NMFS found no records with substantial evidence of fishery interactions causing mortality in U.S. waters (Table 2a; Henry et al. 2020). Serious injury determinations from fishery interaction records yielded a value of 4.75 over five years, for an annual average of 0.95 (Table 2a; Henry et al. 2020). These records are not statistically quantifiable in the same way as the observer fishery records, and they almost surely undercount entanglements for the stock.

CANADA

The audited Greater Atlantic Regional Fisheries Office/NMFS entanglement/stranding database also contains records of fin whales first reported in Canadian waters or attributed to Canada, of which the confirmed mortalities and serious injuries from the last five years are reported in Table 2b. Three records with substantial evidence of fishery interactions causing mortality or serious injury were reported for the 2013–2017 period, resulting in a 5-year annual average of 0.6 animals.
<table>
<thead>
<tr>
<th>Date</th>
<th>Injury Determination</th>
<th>ID</th>
<th>Location</th>
<th>Assigned Cause</th>
<th>Value against PBR</th>
<th>Country</th>
<th>Gear Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-Jan-13</td>
<td>Mortality</td>
<td>-</td>
<td>East Hampton, NJ</td>
<td>VS</td>
<td>1</td>
<td>US</td>
<td>-</td>
<td>Fracturing of left cranium with associated hematoma</td>
</tr>
<tr>
<td>12-Apr-14</td>
<td>Mortality</td>
<td>-</td>
<td>Port Elizabeth, NJ</td>
<td>VS</td>
<td>1</td>
<td>US</td>
<td>-</td>
<td>Fresh carcass on bow of vessel. Large external abrasions w/ associated hemorrhage and skeletal fractures along right side.</td>
</tr>
<tr>
<td>23-Jun-14</td>
<td>Prorated Injury</td>
<td>-</td>
<td>off Chatham, MA</td>
<td>EN</td>
<td>0.75</td>
<td>XU</td>
<td>NR</td>
<td>Free-swimming, trailing 200ft of line. Attachment point(s) unknown. No resights.</td>
</tr>
<tr>
<td>20-Aug-14</td>
<td>Prorated Injury</td>
<td>-</td>
<td>off Provincetown, MA</td>
<td>EN</td>
<td>0.75</td>
<td>XU</td>
<td>NR</td>
<td>Free-swimming, trailing buoy & 200ft of line aft of flukes. Attachment point(s) unknown. No resights.</td>
</tr>
<tr>
<td>05-Oct-14</td>
<td>Mortality</td>
<td>-</td>
<td>off Manasquan, NJ</td>
<td>VS</td>
<td>1</td>
<td>US</td>
<td>-</td>
<td>Large area of hemorrhage along dorsal, ventral, and right lateral surfaces consistent with blunt</td>
</tr>
<tr>
<td>Date¹</td>
<td>Injury Determination</td>
<td>ID</td>
<td>Location²</td>
<td>Assigned Cause</td>
<td>Value against PBR³</td>
<td>Country⁴</td>
<td>Gear Type⁵</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>----</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>06-Jun-15</td>
<td>Serious Injury</td>
<td>-</td>
<td>off Bar Harbor, ME</td>
<td>EN</td>
<td>1</td>
<td>XU</td>
<td>NR</td>
<td>Force trauma.</td>
</tr>
<tr>
<td>06-Jul-16</td>
<td>Prorated Injury</td>
<td>-</td>
<td>off Truro, MA</td>
<td>EN</td>
<td>0.75</td>
<td>XU</td>
<td>NR</td>
<td>Free-swimming with 2 buoys and 80 ft of line trailing from fluke. Line cutting deeply into right fluke blade. Emaciated. No resights.</td>
</tr>
<tr>
<td>08-Jul-16</td>
<td>Prorated Injury</td>
<td>-</td>
<td>off Virginia Beach, VA</td>
<td>EN</td>
<td>0.75</td>
<td>XU</td>
<td>H/MF</td>
<td>Free-swimming with lures in tow along left flipper area. Attachment point(s) and configuration unknown. No resights.</td>
</tr>
<tr>
<td>14-Dec-16</td>
<td>Prorated Injury</td>
<td>-</td>
<td>off Provincetown, MA</td>
<td>EN</td>
<td>0.75</td>
<td>XU</td>
<td>NR</td>
<td>Free-swimming with buoy trailing 6-8 ft aft of flukes. Attachment point(s) and configuration unknown. No resights.</td>
</tr>
</tbody>
</table>
Table 2b. Confirmed human-caused mortality and serious injury records of fin whales (Balaenoptera physalus) first reported in Canadian waters or attributed to Canada where the cause was assigned as either an entanglement (EN) or a vessel strike (VS): 2013–2017

<table>
<thead>
<tr>
<th>Date</th>
<th>Injury Determination</th>
<th>ID</th>
<th>Location</th>
<th>Assigned Cause</th>
<th>Value against PBR</th>
<th>Country</th>
<th>Gear Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6/13</td>
<td>Serious Injury</td>
<td>Capitaine Crochet</td>
<td>St. Lawrence Marine Park, Quebec</td>
<td>EN</td>
<td>1</td>
<td>CN</td>
<td>PT</td>
<td>Pot resting on upper jaw w/ bridle lines embedding in mouth; health decline: emaciation</td>
</tr>
<tr>
<td>5/13/14</td>
<td>Mortality</td>
<td>-</td>
<td>Rocky Harbour, NL</td>
<td>EN</td>
<td>1</td>
<td>CN</td>
<td>PT</td>
<td>Fresh carcass hogn-tied in gear.</td>
</tr>
<tr>
<td>8/25/17</td>
<td>Mortality</td>
<td>-</td>
<td>off Miscou Island, QC</td>
<td>EN</td>
<td>1</td>
<td>CN</td>
<td>PT</td>
<td>Fisher found fresh carcass when hauling gear. Entangled at 78m depth, 51m from trap. Full configuration unknown, but unlikely to have drifted post-mortem in to gear.</td>
</tr>
</tbody>
</table>

a. For more details on events please see Henry et al. 2020.
b. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.
c. Mortality events are counted as 1 against PBR. Serious injury events have been evaluated using NMFS guidelines (NOAA 2012).
d. US=United States, XU=Unassigned 1st sight in US.
e. H=hook, GN=gillnet, GU=gear unidentifiable, MF=monofilament, NP=none present, NR=none recovered/received, PT=pot/trap, WE=weir.

Assigned Cause

5-Year mean (US/XU)

| Vessel strike | 0.8 (0.8/0.0) |
| Entanglement | 0.95 (0.95/0.95) |
Assigned Cause	5-Year mean (CN/XC)
Vessel strike | 0
Entanglement | 0.6 (0.6/ 0.0)

a. For more details on events please see Henry et al. 2020.
b. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.
c. Mortality events are counted as 1 against PBR. Serious injury events have been evaluated using NMFS guidelines (NOAA 2012).
d. CN=Canada, XC=Unassigned 1st sight in CN
e. H=hook, GN=gillnet, GU=gear unidentifiable, MF=monofilament, NP=none present, NR=none recovered/received, PT=pot/trap, WE=weir.

Other Mortality

After reviewing NMFS records for 2013 through 2017, 4 were found that had sufficient information to confirm the cause of death as collisions with vessels (Table 2a; Henry et al. 2020). These records constitute an annual rate of serious injury or mortality of 0.8 fin whales from vessel collisions in U.S. waters.

HABITAT ISSUES

The chronic impacts of contaminants (polychlorinated biphenyls [PCBs] and chlorinated pesticides [DDT, DDE, dieldrin, etc.]) on marine mammal reproduction and health are of concern (e.g., Pierce et al. 2008; Jepson et al. 2016; Hall et al. 2018; Murphy et al. 2018), but research on contaminant levels for the western north Atlantic stock of fin whales is lacking.

Climate-related changes in spatial distribution and abundance, including poleward and depth shifts, have been documented in or predicted for plankton species and commercially important fish stocks (Nye et al. 2009; Head et al. 2010; Pinsky et al. 2013; Poloczanska et al. 2013; Hare et al. 2016; Grieve et al. 2017; Morley et al. 2018) and cetacean species (e.g., MacLeod 2009; Sousa et al. 2019). There is uncertainty in how, if at all, the distribution and population size of this species will respond to these changes and how the ecological shifts will affect human impacts to the species.

STATUS OF STOCK

This is a strategic stock because the fin whale is listed as an endangered species under the ESA. The total level of human-caused mortality and serious injury is unknown. NMFS records represent coverage of only a portion of the area surveyed for the population estimate for the stock. The total U.S. fishery-related mortality and serious injury for this stock derived from the available records is likely biased low and is not less than 10% of the calculated PBR. Therefore, entanglement rates cannot be considered insignificant and approaching a zero mortality and serious injury rate. The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown. There are insufficient data to determine the population trend for fin whales. Because the fin whale is ESA-listed, uncertainties with regard to the negatively biased estimates of human-caused mortality and the incomplete survey coverage relative to the stock's defined range would not change the status of the stock.

REFERENCES CITED

Garrison, L.P. 2016. Abundance of marine mammals in waters of the U.S. East Coast during summer 2011. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRBD Contribution #PRBD-2016-08, 21 pp.

Garrison, L.P. 2020. Abundance of cetaceans along the southeast U.S. east coast from a summer 2016 vessel survey. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRD Contribution #PRD-2020-04, 17 pp.

