PANTROPICAL SPOTTED DOLPHIN (*Stenella attenuata*): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of spotted dolphin in the Atlantic Ocean, the Atlantic spotted dolphin (*Stenella frontalis*) and the pantropical spotted dolphin (*S. attenuata*) (Perrin et al. 1987). The Atlantic spotted dolphin occurs in two forms which may be distinct sub-species (Perrin et al. 1987, 1994; Rice 1998): the large, heavily spotted form which inhabits the continental shelf and is usually found inside or near the 200-m isobath; and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean but is not known to occur in the Gulf of Mexico (Fulling et al. 2003; Mullin and Fulling 2003; Mullin and Fulling 2004). Where they co-occur, the offshore form of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea.

The pantropical spotted dolphin is distributed worldwide in tropical and some sub-tropical oceans (Perrin et al. 1987; Perrin and Hohn 1994). Sightings of this species occur in oceanic waters of the northern Gulf of Mexico (Mullin and Fulling 2004). Pantropical spotted dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

Some of the Pacific Ocean populations have been divided into different geographic stocks based on morphological characteristics (Perrin et al. 1987; Perrin and Hohn 1994). The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted in conjunction with bluefin tuna ichthyoplankton surveys during spring in the northern Gulf of Mexico from the 200-m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Annual cetacean surveys were conducted along a fixed plankton sampling trackline. Survey effort-weighted estimated average abundance of pantropical spotted dolphins for all surveys combined was 31,320 (CV=0.20) (Hansen et al. 1995).

Similar surveys were conducted during spring from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico. Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate. The estimate of abundance for pantropical spotted dolphins in oceanic waters, pooled from 1996 to 2001, was 91,321 (CV=0.16) (Mullin and Fulling 2004).

During summer 2003 and spring 2004, line-transect surveys dedicated to estimating the abundance of oceanic cetaceans were conducted in the northern Gulf of Mexico. During each year, a grid of uniformly-spaced transect lines from a random start were surveyed from the 200-m isobath to the seaward extent of the U.S. EEZ using NOAA Ship *Gordon Gunter* (Mullin 2007).

Figure 1. Distribution of pantropical spotted dolphin sightings from SEFSC spring vessel surveys during 1996-2001 and from summer 2003 and spring 2004 surveys. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100-m and 1,000-m isobaths and the offshore extent of the U.S. EEZ.
As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Because most of the data for estimates prior to 2003 were older than this 8-year limit and due to the different sampling strategies, estimates from the 2003 and 2004 surveys were considered most reliable. The estimate of abundance for pantropical spotted dolphins in oceanic waters, pooled from 2003 to 2004, was 34,067 (CV=0.18) (Mullin 2007), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for pantropical spotted dolphins is 34,067 (CV=0.18). The minimum population estimate for the northern Gulf of Mexico is 29,311 pantropical spotted dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 2003-2004 of 34,067 (CV=0.18) and that for 1996-2001 of 91,321 (CV=0.16) are significantly different (P<0.05). However, the 2003-2004 estimate is similar to that for 1991-1994 of 31,320 (CV=0.20). These temporal abundance estimates are difficult to interpret without a Gulf of Mexico-wide understanding of pantropical spotted dolphin abundance. The Gulf of Mexico is composed of waters belonging to the U.S., Mexico and Cuba. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. EEZ. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate, and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 29,311. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico pantropical spotted dolphin is 293.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of pantropical spotted dolphins during 1998-2006 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007).

Fisheries Information

The level of past or current, direct, human-caused mortality of pantropical spotted dolphins in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to pantropical spotted dolphins by this fishery during 1998-2005.

Other Mortality

Seven pantropical spotted dolphins stranded in the Gulf of Mexico during 1999-2006 (1 in Alabama, 4 in Florida, 2 in Texas). There was no evidence of human interactions for the stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.
STATUS OF STOCK

The status of pantropical spotted dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is
not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the
population trends for this species. The total level of U.S. Gulf of Mexico fishery-caused mortality and serious injury for
this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant
and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual human-related
mortality and serious injury does not exceed PBR.

REFERENCES CITED

Fairfield Walsh, C. and L. P. Garrison. 2006. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during
Garrison, L. P. 2005. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during
vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp.
Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and
Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Available from: NMFS, Southeast Fisheries Science Center, P.O. Drawer 1207, Pascagoula, MS 39568.
R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of
003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans,
LA.
Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic
Diego, 418 pp.
for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.