WHITE-SIDED DOLPHIN (Lagenorhynchus acutus):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

White-sided dolphins are found in temperate and sub-polar waters of the North Atlantic, primarily on continental shelf waters to the 100 m depth contour. The species inhabits waters from central west Greenland to North Carolina (about 35°N) and perhaps as far east as 43° W (Evans 1987). Distribution of sightings, strandings and incidental takes suggests the possibly existence of three stocks units: a Gulf of Maine, Gulf of St. Lawrence, and a Labrador Sea stock (Palka et al. 1997). No genetic studies have been conducted to test this proposed population structure, although some samples are available to initiate such a study (about 25 specimens). Evidence for a separation between the well documented unit in the southern Gulf of Maine and a Gulf of St. Lawrence population comes from a hiatus of summer sightings along the Atlantic side of Nova Scotia. This has been reported in Gaskin (1992), is evident in Smithsonian stranding records, and was seen during an abundance survey conducted in summer 1995 that covered waters from Virginia to the entrance of the Gulf of St. Lawrence. White-sided dolphins were seen frequently in eastern Gulf of Maine waters and in waters at the mouth of the Gulf of St. Lawrence, but only one sighting was recorded in the waters between these two regions.

The Gulf of Maine stock of white-sided dolphins are most common in continental shelf waters from Hudson Canyon (approximately 39°N) north through Georges Bank, and in the Gulf of Maine to the lower Bay of Fundy. Sightings data indicate seasonal shifts in distribution. During January to April, low numbers of white-sided dolphins are found from Georges Bank to Jeffreys Ledge (off New Hampshire), and even lower numbers are south of Georges Bank, as documented by a few strandings collected on beaches of Virginia and North Carolina. From June through September, large numbers of white-sided dolphins are found from Georges Bank to lower Bay of Fundy. From October to December, white-sided dolphins occur at intermediate densities from southern Georges Bank to southern Gulf of Maine (Payne and Heinemann 1990). Sightings south of Georges Bank and around Hudson Canyon have been seen at all times of the year but at low densities. The Virginia and North Carolina observations appear to represent the southern extent of the species range.

Prior to the 1970’s, white-sided dolphins in USA waters were found primarily offshore on the continental slope, while white-beaked dolphins (L. albirostris) were found on the continental shelf. During the 1970’s, there was an apparent switch in habitat use between these two species. This shift may of been a result of the increase in sand lance in the continental shelf waters (Katona et al. 1993; Kenney et al. 1996).

POPULATION SIZE

The total number of white-sided dolphins along the eastern USA and Canadian Atlantic coast is unknown, although four estimates from select regions are available from spring, summer and autumn 1978-82, July-September 1991-92, and July-September 1995 (Table 1; Figure 1).

A population size of 28,600 white-sided dolphins (CV=0.21) was estimated from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (Table 1; CETAP 1982). The estimate was based on an inverse variance weighted pooling of spring, summer and autumn data. An average of these seasons were chosen because the greatest proportion of the population off the northeast USA coast appeared in the study area during these seasons. This estimate does not include a correction
for dive-time or \(g(0)\), the probability of detecting an animal group on the track line. This estimate may not reflect the current true population size because of its old age, and it was estimated just after cessation of extensive foreign fishing operations in the region.

A population size of 20,400 (CV=0.63) white-sided dolphins was estimated from two shipboard line transect surveys conducted during July to September 1991 and 1992 in the northern Gulf of Maine-lower Bay of Fundy region (Table 1; Palka et al. 1997). This population size is a weighted-average of the 1991 and 1992 estimates, where each annual estimate was weighted by the inverse of its variance. The data were collected during surveys designed to estimate abundance of harbor porpoises (Palka 1995). Two independent teams of observers on the same ship surveyed using naked eye in non-closing mode. Using the product integral analytical method (Palka 1995) and DISTANCE (Buckland et al. 1993; Laake et al. 1993) the abundance included an estimate of school size-bias, if applicable, an estimate of \(g(0)\), probability of detecting a group on the track line, but no correction for dive-time or ship avoidance. Variability was estimated using bootstrap re-sampling.

A population size of 729 (CV = 0.47) white-sided dolphins was estimated from a June and July 1993 shipboard line transect sighting survey conducted principally between the 200 and 2,000m isobaths from the southern edge of Georges Bank, across the Northeast Channel to the southeastern edge of the Scotian Shelf (Table 1; Anon. 1993). Data were collected by two alternating teams that searched with 25x150 binoculars and were analyzed using DISTANCE (Buckland et al. 1993; Laake et al. 1993). Estimates include school size-bias, if applicable, but do not include corrections for \(g(0)\), dive-time or ship avoidance. Variability was estimated using bootstrap re-sampling techniques.

A population size of 27,200 (CV=0.43) white-sided dolphins was estimated from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (Table 1; NMFS/NEFSC unpublished data). Total track line length was 32,600 km (17,600 nmi). The ships covered waters between the 50 and 1000 fathom contour lines, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the Mid-Atlantic from the coastline to the 50 fathom contour line, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1000 fathom contour line. Shipboard data were collected using a two independent sighting team procedure and were analyzed using the product integral method (Palka 1995) and DISTANCE (Buckland et al. 1993). Shipboard estimates were corrected for \(g(0)\) and, if applicable, also for school size-bias. Standard aerial sighting procedures with two bubble windows and one belly window observer were used during the aerial survey (Palka 1996). An estimate of \(g(0)\) was not made for the aerial portion of the survey. Estimates do not include corrections for dive-time or ship avoidance. Variability was estimated using bootstrap re-sampling techniques.

There are no published abundance estimates for this species in Canadian waters which lie farther north or east of the above surveys (Gaskin 1992).

The best available current abundance estimate for white-sided dolphins in USA waters is 27,200 (CV=0.43) as estimated from the July to September 1995 line transect survey because this survey is recent and provided the most complete coverage of the known habitat.

Table 1. Summary of abundance estimates for western North Atlantic white-sided dolphins. Month, year, and area covered during each abundance survey, and resulting abundance estimate \(N_{best}\) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>(N_{best})</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>spring, summer &</td>
<td>Cape Hatteras, NC to Nova Scotia</td>
<td>28,600</td>
<td>0.21</td>
</tr>
<tr>
<td>autumn 1978-82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Sep 1991-92</td>
<td>N. Gulf of Maine and Bay of Fundy</td>
<td>20,400</td>
<td>0.63</td>
</tr>
<tr>
<td>Jun-Jul 1993</td>
<td>Georges Bank to Scotian shelf, shelf edge only</td>
<td>729</td>
<td>0.47</td>
</tr>
<tr>
<td>Jul-Sep 1995</td>
<td>Virginia to Gulf of St. Lawrence</td>
<td>27,200</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for white-sided dolphins is 27,200 (CV=0.43). The minimum population estimate for the western North Atlantic white-sided dolphins is 19,196 (CV=0.43).

Current Population Trend

95
There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity include: calving interval is 2-3 years; lactation period is 18 months; gestation period is 10-12 months and births occur from May to early August, mainly in June and July; length at birth is 110 cm; length at sexual maturity is 230-240 cm for males, and 201-222 cm for females; age at sexual maturity is 8-9 years for males and 6-8 years for females; mean adult length is 250 cm for males and 224 cm for females (Evans 1987); and maximum reported age for males is 22 years and for females, 27 years (Sergeant et al. 1980).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 19,196 (CV=0.43). The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.48 because this stock is of unknown status and the CV of the mortality estimate is between 0.3 and 0.6. PBR for the western North Atlantic white-sided dolphin is 184.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Recently, within USA waters, white-sided dolphins have been caught in the New England multispecies sink gillnet, Mid-Atlantic coastal gillnet, pelagic drift gillnet, North Atlantic bottom trawl, and Atlantic squid, mackerel, butterfish trawl fisheries (Table 2). Estimated average annual fishery-related mortality and serious injury to the western North Atlantic white-sided dolphin stock from these USA fisheries during 1993-1997 was 287 dolphins per year (CV = 0.47).

Earlier Interactions

In the past, incidental takes of white-sided dolphins have been recorded in the New England and Bay of Fundy multispecies gillnet fisheries and the Atlantic foreign mackerel fishery. In the mid 1980's, during a University of Maine study, gillnet fishermen reported six takes of white-sided dolphins of which two carcasses were necropsied for biological studies (Gilbert and Wynne 1987; Gaskin 1992). NMFS foreign fishery observers have reported 44 takes of Atlantic white-sided dolphins incidental to fishing activities in the continental shelf and continental slope waters between March 1977 and December 1991 (Waring et al. 1990; NMFS unpublished data). Of these animals, 96% were taken in the Atlantic mackerel fishery. This total includes nine documented takes by USA vessels involved in joint-venture fishing operations in which USA captains transfer their catches to foreign processing vessels. Prior to 1977, there was no documentation of marine mammal by-catch in distant-water fleet (DWF) activities off the northeast coast of the USA. With implementation of the Magnuson Fisheries Conservation and Management Act (MFCMA) in that year, an observer program was established which has recorded fishery data and information of incidental by-catch of marine mammals. DWF effort in the USA Atlantic Exclusive Economic Zone (EEZ) under MFCMA has been directed primarily towards Atlantic mackerel and squid. From 1977 through 1982, an average of 120 different foreign vessels per year (range 102-161) operated within the Atlantic coast EEZ. In 1982, there were 112 different foreign vessels; 16%, or 18, were Japanese tuna longline vessels operating along the USA east coast. This was the first year that the Northeast Regional Observer Program assumed responsibility for observer coverage of the longline vessels. Between 1983 and 1991, the numbers of foreign vessels operating within the Atlantic coast EEZ each year were 67, 52, 62, 33, 27, 26, 14, 13, and 9, respectively. Between 1983 and 1988, the numbers of DWF vessels included 3, 5, 7, 6, 8, and 8, respectively. Japanese longline vessels. Observer coverage on DWF vessels was 25-35% during 1977-82, and increased to 58%, 86%, 95%, and 98%, respectively, in 1983-86; 100% observer coverage was maintained during 1987-91. Foreign fishing operations for squid ceased at the end of the 1986 fishing season and for mackerel at the end of the 1991 season.

USA

New England Multispecies Sink Gillnet
Between 1990 and 1997 there were 39 mortalities observed in the New England multispecies sink gillnet fishery (Table 2). The Northeast Fisheries Science Center (NEFSC) Sea Sampling Observer Program was initiated in 1989, and since that year this fishery has been covered by the program. In 1993 there were approximately 349 vessels (full and part time) in the New England multispecies sink gillnet fishery (Walden 1996). Observer coverage, expressed as a percentage of the number of trips, has been 1%, 6%, 7%, 5%, 7%, 5%, 4%, and 6% for years 1990 to 1997, respectively. The fishery has been observed in the Gulf of Maine and in Southern New England. Most white-sided dolphins have been taken in waters south of Cape Ann during April to December. In recent years, the majority are east and south of Cape Cod. Estimated annual fishery-related mortalities (CV in parentheses) were 49 in 1991 (0.46), 154 in 1992 (0.35), 205 in 1993 (0.31), 240 in 1994 (0.51), 80 in 1995 (1.16), 114 in 1996 (0.61) (Bisack 1997a), and 140 (0.61) in 1997. Average annual estimated fishery-related mortality during 1993-1997 was 156 white-sided dolphins per year (0.26) (Table 2).

Mid-Atlantic Coastal Gillnet

One white-sided dolphin was observed taken in this fishery during 1997 (Table 2). None were taken in observed trips during 1993 to 1996. In July 1993, an observer program was initiated in the USA Atlantic coastal gillnet fishery by the NEFSC Sea Sampling program. Twenty trips were observed during 1993. During 1994 and 1995 221 and 382 trips were observed, respectively. This fishery, which extends from North Carolina to New York, is actually a combination of small vessel fisheries that target a variety of fish species, some of which operate right off the beach. The number of vessels in this fishery is unknown because records, which are held by both state and federal agencies, have not been centralized and standardized. Observer coverage, expressed as percent of tons of fish landed, was 5%, 4%, and 3% for 1995, 1996, and 1997, respectively (Table 2). During 1995 and 1996, observed fishing effort was concentrated off NJ and scattered between DE and NC from 1 to 50 miles off the beach. By-catch estimates were determined using methods similar to that used for by-catch estimates in the New England multispecies gillnet fishery (Bravington and Bisack 1996; Bisack 1997a). Using the observed takes of white-sided dolphins, the estimated annual mortality (CV in parentheses) attributed to this fishery was 0 for 1995 and 1996, and 45 (0.82) for 1997. However, because the spatial-temporal distribution of observer coverage did not cover all types of gillnet fisheries in the mid-Atlantic region during all times of the year, it is likely that the estimated numbers are under-estimates. Average estimated white-sided dolphin mortality and serious injury from the Mid-Atlantic coastal gillnet fishery during 1995 to 1997 was 15 (CV=0.82) (Table 2).

Pelagic Drift Gillnet

In 1996 and 1997, the NMFS issued management regulations which prohibited the operation of this fishery in 1997. Further, in January 1999 the NMFS issued a Final Rule to prohibit the use of drift net gear in the North Atlantic swordfish fishery (50 CFR Part 630). During 1991 to 1996, two white-sided dolphins were observed taken in the Atlantic pelagic drift gillnet fishery. In 1986, NMFS established a mandatory self-reported fisheries information system for large pelagic fisheries. Data files are maintained at the Southeast Fisheries Science Center (SEFSC). The estimated total number of hauls in the Atlantic pelagic drift gillnet fishery increased from 714 in 1989 to 1,144 in 1990; thereafter, with the introduction of quotas, effort was severely reduced. The estimated number of hauls in 1991, 1992, 1993, 1994, 1995 and 1996 were 233, 243, 232, 197, 164, and 149 respectively. Fifty-nine different vessels participated in this fishery at one time or another between 1989 and 1993. In 1994, 1995, and 1996 there were 11, 12, and 10 vessels, respectively, in the fishery (Table 2). Observer coverage, expressed as percent of sets observed was 8% in 1989, 6% in 1990, 20% in 1991, 40% in 1992, 42% in 1993, 87% in 1994, 96% in 1995, and 64% in 1996. Observer coverage dropped during 1996 because some vessels were deemed too small or unsafe by the contractor that provided observer coverage to NMFS. Fishing effort was concentrated along the southern edge of Georges Bank and off Cape Hatteras. Examination of the species composition of the catch and locations of the fishery throughout the year, suggested that the drift gillnet fishery is stratified into two strata, a southern or winter stratum, and a northern or summer stratum. Estimates of the total by-catch, for each year from 1989 to 1993, were obtained using the aggregated (pooled 1989-1993) catch rates, by strata (Northridge 1996). Estimates of total annual by-catch for 1994 through 1996 were estimated for each year separately by summing the observed caught with the product of the average by-catch per haul and the number of unobserved hauls as recorded in logbooks. Variances were estimated using bootstrap re-sampling techniques (Bisack 1997b). Estimated annual fishery-related mortality and serious injury (CV in parentheses) was 4.4 in 1989 (.71), 6.8 in 1990 (.71), 0.9 in 1991 (.71), 0.8 in 1992 (.71), 2.7 in 1993 (0.17), 0 in 1994, 1995, and 1996. There was no fishery during 1997. Estimated average annual mortality and serious injury related to this fishery during 1993-1996 was 0.7 white-sided dolphins (0.17) (Table 2).

North Atlantic Bottom Trawl

Three mortalities were documented between 1991 and 1997 in the North Atlantic bottom trawl fishery (Table 2). The Northeast Fisheries Science Center (NEFSC) Sea Sampling Observer Program was initiated in 1989, and since that year this fishery has been covered by the program, though at a low level. Vessels in the North Atlantic bottom trawl fishery, a Category III fishery under the
MMPA, were observed in order to meet fishery management needs, rather than marine mammal management needs. An average of 970 (CV = 0.04) vessels (full and part time) participated annually in the fishery during 1989-1993. The fishery is active in New England waters in all seasons. The one white-sided dolphin taken in 1992 was taken in a haul that was composed of 43% cod, 20% silver hake, and 17% pollock. One of the 1994 takes was in a haul that was composed of 42% white hake, 19% pollock, and 16% monkfish. The other 1994 take was in a haul that kept seven species of which none were dominant. The estimated fishery-related mortality from 1992 was 110 (CV = 0.97), from 1994 it was 182 (CV=0.71), and it was 0 in the other years (Bisack 1997b). The average annual estimate fishery-related mortality during 1993-1997 was 36.4 white-sided dolphins (CV = 0.71) (Table 2).

Squid, Mackerel, Butterfish Trawl

One white-sided dolphin was observed taken in the mackerel sub-fishery during 1997 (Table 2). The squid, mackerel, butterfish trawl fishery, though managed under one FMP by the Mid-Atlantic Fisheries Management Council, is actually three independent fisheries operating in different areas during different times of the year (NMFS 1998). The Loligo squid sub-fishery is mostly in southern New England, New York and Mid-Atlantic waters, where fishing patterns reflect the seasonal migration of the Loligo (offshore during October to March and inshore during April to September). The Illex sub-fishery is primarily on the continental slope during June to September. The mackerel sub-fishery during January to May is primarily in the southern New England and Mid-Atlantic waters, while during May to December, it is primarily in the Gulf of Maine. The butterfish sub-fishery is primarily a by-catch of the squid and mackerel sub-fisheries. Butterfish migrate north and inshore during the summer, and south and offshore during the winter. In 1995, the squid, mackerel, butterfish trawl fishery was classified as a Category II fishery. Observer coverage was very low; as expressed as percentage of trips observed, it was 0.07% in 1996 and 0.08% in 1997. The by-catch, stratified by sub-fishery, season and geographical area, was estimated using the ratio estimator method, as was documented in Bisack (1997b). The estimated fishery-related mortality was 0 in 1996 and 161 (CV=1.58) in 1997. The average annual estimated fishery-related mortality during 1996 and 1997 was 80.5 (CV=1.58) (Table 2).

CANADA

There is little information available which quantifies fishery interactions involving white-sided dolphins in Canadian waters. Two white-sided dolphins were reported caught in groundfish gillnet sets in the Bay of Fundy during 1985 to 1989, and nine were taken in West Greenland between 1964 and 1966 in the now non-operational salmon drift nets (Gaskin 1992). Several (number not specified) were also taken during the 1960s in the now non-operational Newfoundland and Labrador groundfish gillnets. A few were taken in an experimental drift gillnet fishery for salmon off West Greenland which took place from 1965 to 1982 (Read 1994). More recent information on Canadian white-sided dolphin takes were not available.
Table 2. Summary of the incidental mortality of white-sided dolphins (*Lagenorhynchus acutus*) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Vessels</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>New England Multispecies Sink Gillnet</td>
<td>93-97</td>
<td>1993=349</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.05, .07, .05</td>
<td>7, 10², 2³, 2², 4³</td>
<td>305, 240², 80³, 114³, 140³</td>
<td>.31, .51, 1.16, .61, .61</td>
<td>156.0 (.26)</td>
</tr>
<tr>
<td>Mid-Atlantic Coastal Sink Gillnet</td>
<td>95-97</td>
<td>Unk³</td>
<td>Obs. Data Weighout</td>
<td>.05, .04, .03</td>
<td>0, 0, 0</td>
<td>0, 0, 0</td>
<td>82</td>
<td>15 (0.82)</td>
</tr>
<tr>
<td>Pelagic Drift Gillnet</td>
<td>93-97⁴</td>
<td>1994=11⁵</td>
<td>Obs. Data Logbook</td>
<td>.42, .87, .99, .64, NA⁷</td>
<td>2⁴, 0⁰, 0⁰, 0⁰, NA⁷</td>
<td>2.7³, 0⁰, 0⁰, 0⁰, NA⁷</td>
<td>0.17, 0, 0, 0, NA⁷</td>
<td>0.7⁰ (0.17)</td>
</tr>
<tr>
<td>North Atlantic Bottom Trawl</td>
<td>93-97</td>
<td>1993=970</td>
<td>Obs. Data Weighout</td>
<td>.004, .004, .011⁸, .002, .002</td>
<td>0, 2, 0, 0, 0</td>
<td>0, 182, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>36.4 (0.71)</td>
</tr>
<tr>
<td>Squid, Mackerel, Butterfish Trawl</td>
<td>96-97</td>
<td>Unk⁶</td>
<td>Obs. Data Weighout</td>
<td>.007, .008</td>
<td>0, 1⁰</td>
<td>0, 161⁹</td>
<td>0, 1.58⁹</td>
<td>80.5 (1.58)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>287 (0.47)</td>
</tr>
</tbody>
</table>

1 Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Science Center (NEFSC) Sea Sampling Program. NEFSC collects Weighout (Weighout) landings data which is used as a measure of total effort. Mandatory trip logbook (Trip Logbook) data are used to determine the spatial distribution of some fishing effort in the sink gillnet fishery. Mandatory logbook (Logbook) data are used to measure total effort for the pelagic drift gillnet fishery, and these data are collected at the Southeast Fisheries Science Center (SEFSC).

2 Observer coverage for the New England sink gillnet and Atlantic bottom trawl fisheries are measured in trips, the pelagic drift gillnet fishery is measured in sets, and the Mid-Atlantic coastal sink gillnet fishery is measured in tons of fish landed.

3 White-sided dolphins taken on observed pinger trips were added directly to the estimated total by-catch for that year when there was no closure in effect. There was one observed white-sided dolphin take on a pinger trip in 1994, which was not included in the observed mortality count, no takes observed in pinger trips during 1995 and 1996, and two takes, not included in the observed mortality count, were observed in pingered trips during 1997.

4 1994 to 1997 shown, other years not available on an annual basis.

5 For 1991-1993, pooled bycatch rates were used to estimate bycatch in months that had fishing effort but did not have observer coverage (Northridge 1996). After 1993, observer coverage increased substantially, and by-catch rates were annual rates (Bisack 1997b). There was no fishery in 1997.

6 Observer coverage for the Atlantic bottom trawl fishery in 1995 is based on only January to May data (the only time takes were observed).

7 Fishery closed during 1997. So average by-catch is from 1993 to 1996.

8 Number of vessels is not known.

9 The observed take was in the mackerel sub-fishery.

Other Mortality
Mass strandings involving up to a hundred or more animals at one time are common for this species. From 1968 to 1995, 349 Atlantic white-sided dolphins were known to have stranded on the New England coast (Hain and Waring 1994; Smithsonian stranding records 1996). The causes of these strandings are not known. Because such strandings have been known since antiquity, it could be presumed that recent strandings are a normal condition (Gaskin 1992). It is unknown whether human causes, such as fishery interactions and pollution, have increased the number of strandings. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured may wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

From the NE Regional Office/NMFS strandings and entanglement database, there were 17 recorded stranded white-sided dolphins during 1997, of which 16 died and one was released alive (from RI during Feb). One stranding was in VA during March, the rest were from MD to ME during January to August, where 10 were from MA. The cause of death of these strandings were not determined.

STATUS OF STOCK

The status of white-sided dolphins, relative to OSP, in the USA Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this species. The total fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because estimated average annual fishery-related mortality and serious injury exceeds PBR.

REFERENCES

