SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE
There are two species of pilot whales in the western North Atlantic - the Atlantic or long-finned pilot whale, Globicephala melas, and the short-finned pilot whale, G. macrorhynchus. These species are difficult to differentiate at sea; therefore, some of the descriptive material below refers to Globicephala sp. and is identified as such. NMFS currently is conducting research to improve the understanding of species delineation and distribution.

The short-finned pilot whale is distributed worldwide in tropical to warm temperate waters (Leatherwood and Reeves 1983). The northern extent of the range of this species within the U.S. Atlantic Exclusive Economic Zone (EEZ) is generally thought to be Cape Hatteras, North Carolina (Leatherwood and Reeves 1983). Sightings of these animals in the U.S. Atlantic EEZ occur in oceanic waters (Mullin and Fulling 2003) and along the continental shelf and continental slope in the northern Gulf of Mexico (Hansen et al. 1996; Mullin and Hoggard 2000; Mullin and Fulling 2003). The stock structure of the Atlantic population is uncertain.

POPULATION SIZE
The total number of short-finned pilot whales off the eastern U.S. and Canadian Atlantic coasts is unknown, although several abundance estimates from selected regions are available for select time periods. Sightings have been almost exclusively in the continental shelf edge and continental slope areas (Figure 1). Two estimates were derived from catch data and population models that estimated the abundance of the entire stock. Seasonal estimates are available from selected regions in U.S. waters during spring, summer and autumn 1978-82, August 1990, June-July 1991, August-September 1991, June-July 1993, July-September 1995, July-August 1998, and June-August 2004. Because long-finned and short-finned pilot whales are difficult to identify at sea, seasonal abundance estimates were reported for Globicephala sp., both long-finned and short-finned pilot whales. One estimate is available from the Gulf of St. Lawrence.

Mitchell (1974) used cumulative catch data from the 1951-1961 drive fishery off Newfoundland to estimate the initial population size (ca. 50,000 animals).

Mercer (1975) used population models to estimate a population in the same region of between 43,000-96,000 long-finned pilot whales, with a range of 50,000-60,000 being considered the best estimate.

An abundance estimate of 11,120 (CV=0.29) Globicephala sp. was generated from an aerial survey program conducted from 1978 to 1982 in continental shelf and shelf edge waters between Cape Hatteras, North Carolina, and Nova Scotia (CETAP 1982). An abundance estimate of 3,636 (CV=0.36) Globicephala sp. was obtained from a June and July 1991 shipboard line-transect sighting survey conducted primarily between the 200 and 2,000 m isobaths from Cape Hatteras to Georges Bank (Waring et al. 1992; Waring 1998).

Abundance estimates of 3,368 (CV=0.28) and 5,377 (CV=0.53) Globicephala sp. were obtained from line-transect aerial surveys conducted from August to September 1991 using Twin Otter and AT-11 aircraft, respectively (NMFS 1991).

An abundance estimate of 668 (CV=0.55) Globicephala sp. was obtained from a June and July 1993 shipboard line-transect survey conducted principally between the 200 m and 2,000 m isobaths from the southern edge of Georges Bank, across the Northeast Channel, to the southeastern edge of the Scotian Shelf (NMFS 1993a). Data were collected by two alternating teams that searched with 25x150 binoculars and were analyzed using DISTANCE...
An abundance estimate of 8,176 (CV=0.65) *Globicephala* sp. was derived from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (NMFS unpublished data). Total track line length was 32,600 km. The ships covered waters between the 50 and 1,000 fathom depth contour lines, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the mid-Atlantic from the coastline to the 50 fathom depth contour line, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1,000 fathom isobath. Data collection and analysis methods used are described in Palka (1996). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Further, due to changes in survey methodology, the earlier data should not be used to make comparisons with more current estimates.

Kingsley and Reeves (1998) obtained an abundance estimate of 1,600 long-finned pilot whales (CV=0.65) from a late August and early September aerial survey of cetaceans in the Gulf of St. Lawrence in 1995 and 1998 (Table 1). Based on an examination of long-finned pilot whale summer distribution patterns and information on stock structure, it was deemed appropriate to combine these estimates with NMFS 1995 summer survey data. The best 1995 abundance estimate for *Globicephala* sp. is 9,776 (CV=0.55), the sum of the estimates from the U.S. and Canadian surveys, where the estimate from the U.S. survey was 8,176 animals (CV=0.65) and from the Canadian survey was 1,600 animals (CV=0.65).

An abundance estimate of 9,800 (CV=0.34) *Globicephala* sp. was obtained from a line-transect survey conducted during July 6 to September 6, 1998, by a ship and plane that surveyed 15,900 km of track line in waters north of Maryland (38ºN) (Figure 1; Table 1; Palka 2006). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) which accounts for school size bias and for $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance estimate of 5,109 (CV=0.41) *Globicephala* sp. was obtained from a shipboard line-transect survey conducted between 8 July and 17 August 1998 that surveyed 4,163 km of track line in waters south of Maryland (38ºN) (Table 1; Mullin and Fulling 2003). Abundance was estimated using the program DISTANCE (Buckland et al. 1993; Laake et al. 1993), in which school size bias and ship attraction were accounted for.

The best 1998 abundance estimate for *Globicephala* sp. is 14,909 animals. This estimate is a recalculation of the same data reported in previous SARs. This joint estimate (9,800 + 5,109 = 14,909 whales) is considered best because these two surveys have the most complete coverage of the species’ habitat.

An abundance estimate of 15,728 (CV=0.34) *Globicephala* sp. was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of track line in waters north of Maryland (38ºN) to the Bay of Fundy (45ºN) (Table 1; Palka 2006). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Palka 2005).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths ≥50 m) between Florida and Maryland (27.5 and 38ºN latitude) was conducted during June-August 2004. The survey employed two independent visual teams searching with 50x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the mid-Atlantic. The survey included 5,659 km of trackline, resulting in a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data corrected for visibility bias $g(0)$ and group-size bias and analyzed using line-transect distance analysis (Palka 1995; Buckland et al. 2001). The resulting abundance estimate for *Globicephala* sp. between Florida and Maryland was 15,411 animals (CV=0.43).

The best abundance estimate for *Globicephala* sp. is the sum of the estimates from the two 2004 U.S. Atlantic surveys. This joint estimate (15,728 + 15,411 = 31,139 whales) is considered the best because these two surveys together have the most complete coverage of the species’ habitat.
Table 1. Summary of abundance estimates for the western North Atlantic stock of *Globicephala* sp. by month, year, and area covered during each abundance survey, and resulting abundance estimate (N_{best}) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul-Sep 1998</td>
<td>Maryland to Gulf of St. Lawrence</td>
<td>9,800</td>
<td>0.34</td>
</tr>
<tr>
<td>Jul-Aug 1998</td>
<td>Florida to Maryland</td>
<td>5,109</td>
<td>0.41</td>
</tr>
<tr>
<td>Jul-Sep 1998</td>
<td>Florida to Gulf of St. Lawrence (COMBINED)</td>
<td>14,909</td>
<td>0.26</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Maryland to Bay of Fundy</td>
<td>15,728</td>
<td>0.34</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Maryland</td>
<td>15,411</td>
<td>0.43</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Bay of Fundy (COMBINED)</td>
<td>31,139</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for *Globicephala* sp. is 31,139 animals (CV=0.27) derived from the 2004 surveys. The minimum population estimate for *Globicephala* sp. 24,866.

Current Population Trend

There are insufficient data to determine population trends for *Globicephala* sp.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity (obtained from animals taken in the Newfoundland drive fishery) include: calving interval 3.3 years; lactation period about 21-22 months; gestation period 12 months; births mainly from June to November; length at birth is 177 cm; mean length at sexual maturity is 490 cm for males and 356 cm for females; age at sexual maturity is 12 years for males and 6 years for females; mean adult length is 557 cm for males and 448 cm for females; and maximum age was 40 for males and 50 for females (Sergeant 1962; Kasuya *et al.* 1988). Analysis of data from animals taken in the Faroe Islands drive fishery produced higher values for all parameters (Bloch *et al.* 1993; Desportes *et al.* 1993; Martin and Rothery 1993). These differences are likely related, at least in part, to larger sample sizes and different analytical techniques.

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for *Globicephala* sp. is 24,866. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 this stock is of unknown status. PBR for the western North Atlantic *Globicephala* sp. is 249.
ANNUAL HUMAN-CAUSED MORTALITY

Fishery Information

Detailed fishery information is reported in Appendix II I. Total fishery-related mortality and serious injury cannot be estimated separately for the two species of pilot whales in the U.S. Atlantic EEZ because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that either species might have been subject to the observed fishery-related mortality and serious injury.

Earlier Interactions

Prior to 1977, there was no documentation of marine mammal bycatch in distant-water fleet (DWF) activities off the northeast coast of the U.S. A fishery observer program, which has collected fishery data and information on incidental bycatch of marine mammals, was established in 1977 with the implementation of the Magnuson-Stevens Fisheries Conservation and Management Act (MSFCMA). Foreign fishing operations for squid ceased at the end of the 1986 fishing season and, for mackerel, at the end of the 1991 fishing season.

During 1977-1991, observers in this program recorded 436 pilot whale mortalities in foreign-fishing activities (Waring et al. 1990; Waring 1995). A total of 391 pilot whales (90%) was taken in the mackerel fishery, and 41 (9%) occurred during Loligo and Illex squid-fishing operations. This total includes 48 documented takes by U.S. vessels involved in joint-venture fishing operations in which U.S. captains transfer their catches to foreign processing vessels. Due to temporal fishing restrictions, the bycatch occurred during winter/spring (December to May) in continental shelf and continental shelf edge waters (Fairfield et al. 1993; Waring 1995); however, the majority of the takes occurred in late spring along the 100m isobath. Two animals were also caught in both the hake and tuna longline fisheries (Waring et al. 1990).

Between 1989 and 1998, 87 mortalities were observed in the large pelagic drift gillnet fishery. The annual fishery-related mortality (CV in parentheses) was 77 in 1989 (0.24), 132 in 1990 (0.24), 30 in 1991 (0.26), 33 in 1992 (0.16), 31 in 1993 (0.19), 20 in 1994 (0.06), 9.1 in 1995 (0), 11 in 1996 (0.17), no fishery in 1997 and 12 in 1998 (0).

Five pilot whale (Globicephala sp.) mortalities were reported in the self-reported fisheries information for the Atlantic tuna pair trawl in 1993. In 1994 and 1995 observers reported 1 and 12 mortalities, respectively. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery in 1994 was 2.0 (CV=0.49) and 22 (CV=0.33) in 1995.

Two interactions with pilot whales in the Atlantic tuna purse seine fishery were observed in 1996. In one interaction, the net was actually pursed around one pilot whale, the rings were released and the animal escaped alive, condition unknown. This set occurred east of the Great South Channel and just north of the Cultivator Shoals region on Georges Bank. In a second interaction, 5 pilot whales were encircled in a set. The net was opened prior to pursing to let the whales swim free, apparently uninjured. This set occurred on the Cultivator Shoals region on Georges Bank. No trips were observed during 1997 through 1999. Four trips were observed in September 2001. No marine mammals were observed taken during these trips.

No pilot whales were taken in observed mid-Atlantic Coastal Gillnet trips during 1993-1997. One pilot whale was observed taken in 1998, 0 during 1999-2003. Observed effort was scattered between New York and North Carolina from 1 to 50 miles off the beach. All bycatches were documented during January to April. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 2 in 1998 (1.10).

One pilot whale take was observed in the Illex squid portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries in 1996 and 1 in 1998. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 45 in 1996 (CV=1.27), 0 in 1997, 85 in 1998 (CV=0.65) and 0 in 1999. However, these estimates should be viewed with caution due to the extremely low (<1%) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

One pilot whale take was observed in the Loligo squid portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries in 1999. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 0 between 1996 and 1998 and 49 in 1999 (CV=.97). However, these estimates should be viewed with caution due to the extremely low (<1%) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

There was one observed take in the Southern New England/mid-Atlantic Bottom Trawl fishery reported in 1999. The estimated fishery-related mortality for pilot whales attributable to this fishery was 0 in 1996-1998, and 228 (CV= 1.03) in 1999. After 1999 this fishery is a component of the mid-Atlantic bottom fishery.
Pelagic Longline

Most of the estimated marine mammal bycatch is from U.S. Atlantic EEZ waters between South Carolina and Cape Cod (Johnson et al. 1999; Garrison 2005). Pilot whales are frequently observed to feed on hooked fish, particularly big-eye tuna (NMFS unpublished data). Between 1992 and 2004 68 pilot whales (including 2 identified as short-finned pilot whales) were released alive, including 38 that were considered seriously injured (of which 1 was identified as a short-finned pilot whale), and 3 mortalities were observed. January-March bycatch was concentrated on the continental shelf edge northeast of Cape Hatteras. Bycatch was recorded in this area during April-June, and takes also occurred north of Hydrographer Canyon off the continental shelf in water over 1,000 fathoms during April-June. During the July-September period, takes occurred on the continental shelf edge east of Cape Charles, Virginia, and on Block Canyon slope in over 1,000 fathoms of water. October-December bycatch occurred between the 20 and 50 fathom isobaths between Barnegat Bay and Cape Hatteras. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic (excluding the Gulf of Mexico) attributable to this fishery was: 127 in 1992 (CV=1.00), 0 from 1993-1998, 93 in 1999 (CV=1.00), 24 in 2000 (CV=1.0), 20 (CV = 1.0) in 2001, 2 (CV =1.0) in 2002, 0 in 2003-2004. The estimated serious injuries were 40 (CV=0.71) in 1992, 19 (CV=1.00) in 1993, 232 (CV=0.53) in 1994, 345 (CV= 0.51) in 1995, (includes 37 estimated short-finned pilot whales in 1995 (CV=1.00), 0 from 1996 to 1998, 288 (CV=0.74) in 1999, 109 (CV=1.00) in 2000, 50 in 2001 (CV = 0.58), 51 in 2002 (CV = 0.48), 21 in 2003 (CV = 0.78), and 74 in 2004 (CV=0.42). The average 'combined' annual mortality in 2000-2004 was 70 pilot whales (CV=0.37) (Table 2).

Mid-Atlantic Bottom Trawl

Two pilot whales were taken in the Gulf of Maine in 2000.

GOM/GB Herring Mid-Water Trawl JV and TALFF

There were no marine mammal takes observed from the domestic mid-water trawl fishing trips between 2000-2004.

A U.S. joint venture (JV) mid-water (pelagic) trawl fishery was conducted on Georges Bank from August to December 2001. Eight pilot whales were incidentally captured in a single mid-water trawl during JV fishing operations. Three pilot whales were incidentally captured in a single mid-water trawl during foreign fishing operations (TALFF) (Table 2). The average annual mortality attributed to the Atlantic herring mid-water trawl fishery was 11 animals (Table 2).

Northeast Bottom Trawl

The fishery is active in New England waters in all seasons. Two pilot whales were taken in the Gulf of Maine in 2004.

Northeast Mid-Water Trawl – Including Pair Trawl

The two most commonly targeted fish in this fishery are herring (94% of VTR records) and mackerel (0.4%). Thus, the observer coverage and bycatch estimates are only for these two sub-fisheries. The observer coverage in this fishery was highest during 2003 and 2004, though a few trips in earlier years were observed (Table 2). A pilot whale was observed taken in the single trawl fishery on the northern edge of Georges Bank in a haul targeting herring. Due to small sample sizes, the bycatch rate model used all observed mid-water trawl data, including paired and single, and Northeast and mid-Atlantic mid-water trawls, that targeted either herring or mackerel and were observed between 1999 and 2004 (NMFS unpublished data). The model that best fit these data was a binomial logistic regression model that included target species and bottom slope as significant explanatory variables, and soak duration as the unit of effort. Estimated annual fishery-related mortalities (CV in parentheses) were 4.6 (0.74) in 2000, 11 (0.74) in 2001, 8.9 (0.74) in 2002, 14 (0.74) in 2003, and 5.8 (0.74) in 2004 (Table 2; NMFS unpublished data). The average annual estimated fishery-related mortality during 2002-2004 was 8.9 (0.35).

CANADA

An unknown number of pilot whales have also been taken in Newfoundland and Labrador, and Bay of Fundy groundfish gillnets, Atlantic Canada and Greenland salmon gillnets, and Atlantic Canada cod traps (Read 1994).

Between January 1993 and December 1994, 36 Spanish deep-water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Banks) (Lens 1997). A total of 47 incidental catches were recorded, which included 1 long-finned pilot whale. The incidental mortality rate for pilot whales was 0.007/set.
In Canada, the fisheries observer program places observers on all foreign fishing vessels, on between 25% and 40% of large Canadian vessels (greater than 100 ft), and on approximately 5% of small vessels (Hooker et al. 1997). Fishery observer effort off the coast of Nova Scotia during 1991-1996 varied on a seasonal and annual basis, reflecting changes in fishing effort (see Figure 3, Hooker et al. 1997). During the 1991-1996 period, long-finned pilot whales were bycaught (number of animals in parentheses) in bottom trawl (65); midwater trawl (6); and longline (1) gear. Recorded bycatches by year were: 16 in 1991, 21 in 1992, 14 in 1993, 3 in 1994, 9 in 1995 and 6 in 1996. Pilot whale bycatches occurred in all months except January-March and September (Hooker et al. 1997).

Table 2. Summary of the incidental mortality and serious injury of pilot whales (Globicephala sp.) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the observed mortalities and serious injuries recorded by on-board observers, the estimated annual mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined estimates (Estimated CVs) and the mean of the combined estimates (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Vessels</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Serious Injury</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Atlantic Bottom Trawl</td>
<td>00-04 unk</td>
<td>Obs. Data Dealer</td>
<td>.01, .01, .01, .03</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 0, 0, 0, 0</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td></td>
</tr>
<tr>
<td>Northeast Bottom Trawl</td>
<td>00-04 unk</td>
<td>Obs. Data Dealer Data VTR Data</td>
<td>.01, .01, .03, .04, .05</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 2</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td></td>
</tr>
<tr>
<td>GOM/GB Herring Mid-Water Trawl JV and TALFF</td>
<td>2001</td>
<td>10</td>
<td>Obs. Data</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>na</td>
<td>11</td>
</tr>
<tr>
<td>Northeast Mid-Water Trawl - Including Pair Trawl (Herring and Mackerel only)</td>
<td>00-04 unk</td>
<td>Obs. Data Dealer Data VTR Data</td>
<td>.005, .001, 0, .03, .14</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>4.6, 11, 8.9, 14, 5.8</td>
<td>4.6, 11, 8.9, 14, 5.8</td>
<td>.74, .74, .74, .74</td>
<td>.74</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>Pelagic Longline (excluding NED-E)</td>
<td>00-04</td>
<td>116, 98, 87, 63, 58</td>
<td>Obs. Data Logbook</td>
<td>.04, .04, .05, .09, .06</td>
<td>4, 4, 4, 2, 6</td>
<td>1, 1, 0, 0, 0</td>
<td>109, 50, 52, 21, 74</td>
<td>24, 20, 2, 0, 0</td>
<td>133, 70, 54, 21, 74</td>
<td>.88, .50, .46, .77, .42</td>
<td>70</td>
</tr>
<tr>
<td>Pelagic Longline - NED-E area only</td>
<td>01-03</td>
<td>9, 14, 11</td>
<td>Obs. Data Logbook</td>
<td>1, 1, 1, 0, 0, 0, 0, 0, 0, 0</td>
<td>0, 0, 0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>unk</td>
<td></td>
</tr>
</tbody>
</table>

a Number of vessels in the fishery is based on vessels reporting effort to the pelagic longline logbook.
b Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. Mandatory logbook data were used to measure total effort for the longline fishery. These data are collected at the Southeast Fisheries Science Center (SEFSC).
c Observer coverage of the mid-Atlantic coastal gillnet fishery is measured in tons of fish landed. Observer coverage for the longline fishery is in terms of sets. The trawl fisheries are measured in trips.
d A new method was used to develop preliminary estimates of mortality for the mid-Atlantic and Northeast bottom trawl fisheries during 2000-2004.
They are a product of bycatch rates predicted by covariates in a model framework and effort reported by commercial fishermen on mandatory vessel logbooks. This method differs from the previous method used to estimate mortality in these fisheries prior to 2000. Therefore, the estimates reported prior to 2000 cannot be compared to estimates during 2000-2004. In addition, the fisheries listed in Table 2 reflect new definitions defined by the proposed List of Fisheries for 2005 (FR Vol. 69, No. 231, 2004). The 'North Atlantic bottom trawl' fishery is now referred to as the 'Northeast bottom trawl'. The Illex, Loligo and Mackerel fisheries are now part of the 'mid-Atlantic bottom trawl' fishery.

Other Mortality

Pilot whales have a propensity to mass strand throughout their range, but the role of human activity in these events is unknown. Between 2 and 168 pilot whales have stranded annually, either individually or in groups, along the eastern U.S. seaboard since 1980 (NMFS 1993b, stranding databases maintained by NMFS NER, NEFSC and SEFSC). From 2000-2004, 42 short-finned pilot whales, 117 long-finned pilot whales, and 7 pilot whales not specified to the species level were reported stranded between Maine and Florida, including Puerto Rico and the Exclusive Economic Zone (EEZ), (Table 3). This includes several mass strandings as follows: 11 long-finned pilot whales mass stranded in Nantucket, MA in 2000 and 57 in 2002 in Dennis, MA; and 28 short-finned pilot whales stranded in Content Passage, Monroe County, FL (ocean side) on April 18, 2003. Two juvenile animals that live stranded in Chatham, Massachusetts in 1999 were rehabilitated, satellite tagged and released (Nawojchik et al. 2003). Both animals were released off eastern Long Island, New York and tracked for four months in the Gulf of Maine. Four of 6 animals from one live stranding event in Massachusetts in 2000 were rehabilitated and released. However, certain studies have shown that frequently, animals that are returned to the water swim away and strand someplace else (Fehring and Wells 1976; Irvine et al. 1979; Odell et al. 1980). The fate of the animals is footnoted in Table 3, when recorded.

An Unusual Mortality Event (UME) occurred along the coast of Virginia from May to July 2004, when 66 small cetaceans stranded mostly along the outer (eastern) coast of Virginia’s barrier islands. Species included: 52 bottlenose dolphins (Tursiops truncatus - stock undetermined to date), 4 harbor porpoise (Phocoena phocoena), 4 common dolphins (Delphinus delphis), 4 Atlantic white-sided dolphins (Lagenorhynchus acutus), 1 Risso’s dolphin (Grampus griseus), and 1 pilot whale (Globicephala sp.). Additional strandings occurring from August through December were found to be at similar rates to previous years, and were not included in this UME. Human interactions were implicated in 17 of the strandings (1 common and 16 bottlenose dolphins), other causes were implicated in 14 strandings (1 Atlantic white-sided dolphin, 2 harbor porpoises and 11 bottlenose dolphins), and the no cause could be determined for the remaining strandings, including the pilot whale. Five bottlenose dolphins and 1 common dolphin were entangled in pound nets when they stranded, 1 bottlenose dolphins was entangled in pot gear, and 3 bottlenose dolphins were entangled in unidentified netting or lines, and 2 bottlenose dolphins were found with cinder blocks tied to their flukes (one on Cedar Island in June, and one on the Chincoteague National Wildlife refuge in July), and a third had a frayed line tied to its flukes and was found in Wallops Island in July 2004.

Another UME was declared when 36 small cetaceans stranded from Maryland to Georgia between 3 July and 2 December 2004. The species involved, which are generally found offshore and are not expected to strand along the coast, include: 15 pygmy sperm whales (Kogia breviceps), 1 dwarf sperm whale (K. sima), 8 offshore bottlenose dolphins, 3 short-beaked common dolphins, 3 Risso’s dolphins (Grampus griseus), 1 Clymene dolphin (Stenella clymene), 1 pantropical spotted dolphin (S. attenuata), 1 short-finned pilot whale, 1 unidentified pilot whale, 1 Sowerby’s beaked whale (Mesoplodon bidens), and 1 unidentified small cetacean that was pushed off the beach alive. Preliminary necropsy results indicate that several bottlenose dolphins and the Clymene dolphin that stranded in NC exhibited inflammation in the spinal chord and brain, though necropsy analyses are still underway and no final determination on this UME has been made.

Short-finned pilot whales strandings have been reported stranded as far north as Nova Scotia (1990) and Block Island, Rhode Island (2001), though the majority of the strandings occurred from North Carolina southward (Table 3). Long-finned pilot whales have been reported stranded as far south as Florida, when 2 long-finned pilot whales were reported stranded in Florida in November 1998, though their flukes had been apparently cut off, so it is unclear
where these animals actually may have died. One additional long-finned pilot whale stranded in South Carolina in 2003, though the confidence in the species identification was only moderate. Most of the remaining long-finned pilot whale strandings were from North Carolina northward (Table 3).

In eastern Canada, 37 strandings of long-finned pilot whales (173 individuals) were reported on Sable Island, Nova Scotia from 1970 to 1998 (Lucas and Hooker 1997; Lucas and Hooker 2000). This included 130 animals that mass stranded in December 1976, and 2 smaller groups (<10 each) in autumn 1979 and summer 1992. Fourteen strandings were also recorded along Nova Scotia in 1991-1996 (Hooker et al. 1997). Several mass live strandings occurred in Nova Scotia recently - 14 pilot whales live mass stranded in 2000 and 3 in 2001 in Judique, Inverness County and 4 pilot whales live mass stranded at Point Tupper, Inverness County, in 2002, though no specification to species was made.

Table 3. Pilot whale (*Globicephala macrorhynchus* (SF), *Globicephala melas* (LF) and *Globicephala* sp. (Sp)) strandings along the Atlantic coast, 2000-2004. Strandings which were not reported to species have been reported as *Globicephala* sp. The level of technical expertise among stranding network personnel varies, and given the potential difficulty in correctly identifying stranded pilot whales to species, reports to specific species should be viewed with caution.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nova Scotia</td>
<td>0</td>
<td>0</td>
<td>16a,b</td>
<td>0</td>
<td>0</td>
<td>3c</td>
<td>0</td>
<td>0</td>
<td>7d</td>
<td>0</td>
<td>0</td>
<td>2a</td>
</tr>
<tr>
<td>Maine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5e</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>65f</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Connecticut</td>
<td>0</td>
</tr>
<tr>
<td>New York</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>New Jersey</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6g</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Delaware</td>
<td>0</td>
</tr>
<tr>
<td>Maryland</td>
<td>0</td>
</tr>
<tr>
<td>Virginia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1h</td>
</tr>
<tr>
<td>North Carolina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1i</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1i</td>
<td>1j</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1k</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Georgia</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Florida</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2g</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EEZ</td>
<td>0</td>
<td>1o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1o</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TOTALS - U.S., Puerto Rico, EEZ</td>
<td>1</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>68</td>
<td>31</td>
<td>18</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

64
Between 2000-2004, human and/or fishery interactions were documented as follows: one long-finned pilot whale stranded with possible propeller marks in Maine in September 2001, two long-finned pilot whales stranded dead separately in April 2003 off New Jersey with rope tied around the flukes, and signs of human interaction were reported (but no specifics recorded in database) on 1 stranded short-finned pilot whale (not part of the live mass stranding), which stranded in May 2003 in Florida.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

A potential human-caused source of mortality is from polychlorinated biphenyls (PCBs) and chlorinated pesticides (DDT, DDE, dieldrin, etc.), moderate levels of which have been found in pilot whale blubber (Taruski et al. 1975; Muir et al. 1988; Weisbrod et al. 2000). Weisbrod et al. (2000) reported that bioaccumulation levels were more similar in whales from the same stranding group than animals of the same sex or age. Also, high levels of toxic metals (mercury, lead, cadmium) and selenium were measured in pilot whales harvested in the Faroe Island drive fishery (Nielsen et al. 2000). Similarly, Dam and Bloch (2000) found very high PCB levels in pilot whales in the Faroes. The population effect of the observed levels of such contaminants is unknown.

STATUS OF STOCK

The status of short-finned pilot whales relative to OSP in the U.S. Atlantic EEZ is unknown. There are insufficient data to determine the population trends for this species. The species is not listed under the Endangered Species Act. The U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR, and therefore cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The status of the stock is unknown.
REFERENCES CITED

